Skip to main content
Log in

Characterization of four in vitro established canine mammary carcinoma and one atypical benign mixed tumor cell lines

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Five spontaneous canine mammary tumors were cultured in vitro and cell lines were established. The tumors included three frozen carcinomas, fine-needle aspirate from one fresh carcinoma, and one fresh atypical benign mixed tumor. The cell lines have so far been cultured for about 2 yr and passaged between 45 and 200 times. The cell lines expressed different types of intermediate filaments, including a heterogenous pattern. In some cases no intermediate filaments were expressed. Ultrastructure studies showed epithelial cells and cells intermediate between epithelial and myoepithelial types. Retrovirus associated A-particles were found in two carcinomas. The mixed mammary tumor cell line formed ductlike structures in collagen substrate. The cell lines grew when inoculated s.c. into male nude mice. Two carcinomas caused lymph node metastases in two mice and another carcinoma single lung metastases in one tested mouse. DNA hypodiploidy, studied by flow cytometry, in one of the primary carcinoma was retained in vitro, and this cell line showed polyploidy during later passages. The other cell lines had a more unstable DNA profile, although a tendency for polyploidy was found. These findings were also illustrated in chromosome studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, A. Normal resting breast. Atlas of the ultrastructure of human breast diseases. Edinburgh: Churchill Livingstone; 1978:2.

  2. Atkin, N. B.; Kay, R. Prognostic significance of modal DNA value and other factors in malignant tumors, based on 1465 cases. Br. J. Cancer. 40:210–221; 1979.

    PubMed  CAS  Google Scholar 

  3. Auer, G.; Eriksson, E.; Azavedo, E., et al. Prognostic significance of nuclear DNA content in mammary adenocarcinomas in humans. Cancer Res. 44:394–396; 1984.

    PubMed  CAS  Google Scholar 

  4. Bartek, J.; Taylor-Papadimitriou, J.; Miller, N., et al. Patterns of expression of keratin 19 as detected with monoclonal antibodies in human breast tissues and tumours. Int. J. Cancer 36:299–306; 1985.

    PubMed  CAS  Google Scholar 

  5. Bennett, D. C.; Peachey, L. A.; Durbin, H., et al. A possible mammary stem cell line. Cell 15:283–298; 1978.

    Article  PubMed  CAS  Google Scholar 

  6. Bostock, D. E. The prognosis following the surgical excision of canine mammary neoplasms. Eur. J. Cancer. 11:389–396; 1975.

    PubMed  CAS  Google Scholar 

  7. Brodey, R. S., Goldschmidt, M. H.; Roszel, J. R. Canine mammary gland neoplasms. J. Am. Anim. Hospital Assoc. 19:61–90; 1983.

    Google Scholar 

  8. Caselitz, J., Osborn, M.; Wustrow, J., et al. The expression of different intermediate-sized filaments in human salivary glands and their tumours. Pathol. Res. Pract. 175:266–278; 1982.

    PubMed  CAS  Google Scholar 

  9. Chnsp, C. E.; Spangler, W. L. The malignant canine tumor as a model for the study of human breast cancer. In The Canine as a biomedical research model. Technical Inf. Center. Washington, DC: U.S. Dept. of Energy. 1980:331–349.

  10. Clark, G. M.; Dressler, L. G.; Owens, M. A., et al. Prediction of relapse or survival in patients with node-negative breast cancer by DNA flow cytometry. N. Engl. J. Med. 320 (10):627–633; 1989.

    PubMed  CAS  Google Scholar 

  11. Coulson, P. B.; Thorntwaite, J. T.; Wooley, T. W., et al. Prognostic indicators including DNA histogram type, receptor content and staging related to breast cancer patient survival. Cancer Res. 44:4187–4196: 1984.

    PubMed  CAS  Google Scholar 

  12. Dulbecco, R.; Henahan, M.; Bowman, M., et al. Generation of fibro-blast-like cells from cloned epithelial mammary cells in vitro. A possible new cell type. Proc. Natl. Acad. Sci. USA 78(4):2345–2349; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Easty, G. C.; Easty, D. M.; Monaghan, P., et al. Preparations and identification of human breast epithelial cells in culture. Int. J. Cancer 26:577–584; 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Ebendal, T. Use of collagen gels to bioassay nerve growth factor activity. In: Rush, R. A., ed. Nerve growth factors. Bath: Wiley and Sons Ltd; 1989:84–86.

    Google Scholar 

  15. Else, R. W.; Norval, M.; Neill, W. A. The characteristics of a canine mammary carcinoma cell line, Rem 134. Br. J. Cancer. 46:675–681; 1982.

    PubMed  CAS  Google Scholar 

  16. Fisher, E. R.; Paulson, J. D. Karyotypic abnormalities in precursor lesions of human cancer of the breast. Am. J. Clin. Pathol. 69:284–288; 1978.

    PubMed  CAS  Google Scholar 

  17. Foster, C. S.; Smith, C. A.; Dinsdale, E. A., et al. Human mammary gland morphogenesisin vitro: the growth and differentiation of normal breast epithelium in collagen gel cultures defined by electron microscopy, monoclonal antibodies, and autoradiography. Dev. Biol. 96:197–216, 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Fowler, E. H.; Wilson, G. P.; Koestner, A. Biologic behavior of canine mammary neoplasms based on a histrogenetic classification. Vet. Pathol. 11:212–229; 1974.

    PubMed  CAS  Google Scholar 

  19. Guelstein, V. I.; Tchypysheva, T. A.; Ermilova, V. D., et al. Monoclonal antibody mapping of keratins 8 and 17 and of vimentin in normal human mammary gland, benign tumors, dysplasias and breast cancer. Int. J. Cancer 42:147–153; 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Gustavsson, H.; Bergman, F.; Virtanen, I., et al. Myoepithehal cells in salivary gland neoplasms. APMIS. 97:49–55; 1989.

    Article  Google Scholar 

  21. Hampe, J. F.; Misdorp, W. IX. Tumours and dysplasias of the mammary gland. Bull. WHO 50:111–133; 1974.

    PubMed  CAS  Google Scholar 

  22. Hellmén, E.; Lindgren, A. The expression of intermediate filaments in canine mammary glands and their tumors. Vet. Pathol. 26:420–428; 1989.

    PubMed  Google Scholar 

  23. Hellmén, E.; Lindgren, A.; Linell, F., et al. Comparison of histology and clinical variables to DNA ploidy in canine mammary tumors. Vet. Pathol. 25:219–226; 1988.

    Article  PubMed  Google Scholar 

  24. Hiddemann, W.; Schumann, J.; Andree, M., et al. Convention on nomenclature for DNA cytometry. Cytometry 5:445–446; 1984.

    Article  Google Scholar 

  25. Hill, S. M.; Rodgers, C. S.; Hultén, M. A. Cytogenetic analysis in human breast carcinoma. II. Seven cases in the triploid/tetraploid range investigated using direct preparations. Cancer Genet. Cytogenet. 24:45–62; 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Jarasch, E-D.; Nagle, R. B.; Kaufmann, M., et al. Differential diagnosis of benign epithelial proliferations and carcinomas of the breast using antibodies to cytokeratins. Hum. Pathol. 19:276–289; 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Kalloniemi, O.-P.; Blanco, G.; Alavaikko, M., et al. Tumour DNA ploidy as an independent prognostic factor in breast cancer. Br. J. Cancer 56:637–642; 1987.

    Google Scholar 

  28. Klintenberg, C.; Stål, O.; Nordenskjöld, B., et al. Proliferative index, cytosol estrogen receptor and axillary node status as prognostic predictors in human mammary carcinoma. Breast Cancer Res. Treat. 7(Suppl):99–106; 1986.

    Google Scholar 

  29. Lichtner, R. B.; Moskwa, P. S.; Nicolson, G. L. Heterogenous expression of cytokeratins in metastatic mammary adenocarcinoma cells in vitro and in vivo. Invasion & Metastasis 7:367–383; 1987.

    CAS  Google Scholar 

  30. Limon, J.; Dal Cin, P.; Sandberg, A. A. Application of long-term collagenase disaggregation for the cytogenetic analysis of human solid tumors. Cancer Genet. Cytogenet. 23:305–313; 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Lugo, M.; Putong, P. B. Metaplasia Arch. Pathol. Lab. Med. 108:185–189; 1984.

    CAS  Google Scholar 

  32. Mackay, J.; Elder, P. A.; Porteous, D. J.; et al. Partial deletion of chromosome 11p in breast cancer correlates with size of primary tumour and oestrogen receptor level. Br. J. Cancer. 58:710–714; 1988.

    PubMed  CAS  Google Scholar 

  33. Mackay, J.; Elder, P. A.; Steel, C. M.; et al. Allele loss on short arm of chromosome 17 in breast cancer. Lancet, December 17, 2(8625):1384–85; 1988.

    Article  PubMed  CAS  Google Scholar 

  34. Miles, C. P.; Moldavannu, G.; Miller, D. G.; et al. Chromosome analysis of canine lymphosarcoma: two cases involving probable centric fusion. Am. J. Vet. Res. 31 (4):783–790, 1970.

    PubMed  CAS  Google Scholar 

  35. Moll, R.; Franke, W. W.; Schiller, D. L., et al. The catalog of human cytokeratins: patterns of expression in normal epitheha, tumors and cultured cells. Cell 31:11–24; 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Nagle, R. B.; Böcker, W.; Davis, J. R., et al. Characterization of breast carcinomas by two monoclonal antibodies distinguishing myoepithehal from luminal epithelial cells. J. Histochem. Cytochem. 34(7):869–881; 1986.

    PubMed  CAS  Google Scholar 

  37. Norval, M.; Maingay, J.; Else, R. W. Studies of three canine mammary carcinoma cell lines—I. In vitro properties. Eur. J. Clin. Oncol. 20(12):1489–1500; 1984.

    Article  CAS  Google Scholar 

  38. Ormerod, E. J.; Rudland, P. S. Mammary gland morphogenesis in vitro: formation of branched tubules in collagen gels by a cloned rat mammary cell line. Dev. Biol. 91:360–375; 1982.

    Article  PubMed  CAS  Google Scholar 

  39. Osborn, M., Weber, K. Biology of disease tumor diagnosis by intermediate filament typing a novel tool for surgical pathology. Lab. Invest. 48(4)372–394,1983.

    PubMed  CAS  Google Scholar 

  40. Oshimura, M.; Sasaki, M.; Makino, S. Chromosomal banding patterns in primary and transplanted venereal tumors of the dog. JNCI 51(4):1197–1203; 1973.

    PubMed  CAS  Google Scholar 

  41. Owen, L. N. A comparative study of canine and human breast cancer. Invest. Cell. Pathol. 2:257–275; 1979.

    PubMed  CAS  Google Scholar 

  42. Owen, L. N.; Morgan, D. R.; Bostock, D. E., et al. Tissue culture and transplantation studies on canine mammary carcinoma. Eur. J. Cancer. 13:1445–1449; 1977.

    PubMed  CAS  Google Scholar 

  43. Palmer, T. E.; Monlux, A. W. Acid mucopolysaccharides in mammary tumors of dogs. Vet. Pathol. 16:493–509; 1979.

    PubMed  CAS  Google Scholar 

  44. Pellegnno, M. B.; Asch, B. A.; Connolly, J. L., et al. Differential expression of keratin 13 and 16 in normal epithelium, benign lesions, and ductal carcinomas of the human breast determined by the monoclonal antibody Ks8. 12. Cancer Res. 48:5831–5836; 1988.

    Google Scholar 

  45. Pulley, L. T. Ultrastructural and histochemical demonstration of myoe-pithelium in mixed tumors of the canine mammary gland. Am. J. Vet. Res. 34(12): 1513–1522; 1973.

    PubMed  CAS  Google Scholar 

  46. Raymond, W. A.; Leong, A. S-Y. Co-expression of cytokeratin and vimentin intermediate filament proteins in benign and neoplastic breast epithelium. J. Pathol. 157:299–306; 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Raymond, W. A.; Leong, A. S-Y. Vimentin—new prognostic parameter in breast carcinoma? J. Pathol. 158:107–114; 1989.

    Article  PubMed  CAS  Google Scholar 

  48. Remvikos, Y.; Gerbault-Seurreau, M.; Vielh, P.; et al. Relevance of DNA ploidy as a measure of genetic deviation: comparison of flow cytometry and cytogenetics in 25 cases of human breast cancer. Cytometry 9:612–618; 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Rudland, P. S. Stem cells and the development of mammary cancers in experimental rats and in humans. Cancer Metastasis Rev. 6:55–83; 1987.

    Article  PubMed  CAS  Google Scholar 

  50. Rutteman, G. R.; Cornelisse, C. J.; Dijkshoorn, N. J., et al. Flow cytometric analysis of DNA ploidy in canine mammary tumors. Cancer Res. 48:3411–3417; 1988.

    PubMed  CAS  Google Scholar 

  51. Sandberg, A. A. Solid tumors and metastatic cancer. The chromosomes in human cancer and leukemia, New York: Elsevier; 1980:485–490.

    Google Scholar 

  52. Sato, M.; Hayashi, Y.; Yanagawa, T., et al. Intermediate-sized filaments and specific markers in a human salivary gland adenocarcinoma cell line and its nude mouse tumors. Cancer Res. 45:3878–3890; 1985.

    PubMed  CAS  Google Scholar 

  53. Sharma, A. K. Chromosome studies from mammals with special reference to human chromosomes. In: Sharma, A. K.; Sharma, A. C., eds. Chromosome techniques. England: Butterworth and Co. Ltd.; 1972:84–86.

    Google Scholar 

  54. Smith, J. A.; Winslow, D. P.; Rudland, P. S. Different growth factors stimulate cell division of rat mammary epithelial, myoepithehal, and stromal cell lines in culture. J. Cell. Physiol. 119:320–326; 1984.

    Article  PubMed  CAS  Google Scholar 

  55. Sonoda, M.; Nhyama, M.; Mon, M. A case of canine fibrosarcoma with abnormal chromosomes. Jpn. J. Vet. Res. 18:145–151; 1970.

    PubMed  CAS  Google Scholar 

  56. Strum, J. M.; Hillman, E. A. Human breast epithelium in organ culture: effect of hormones on growth and morphology. In Vitro 17(l):33–43; 1981.

    Article  PubMed  CAS  Google Scholar 

  57. Swayne, D. E.; Michalski, K.; McCaw, D. Cutaneous lymphosarcoma with abnormal chromosomes in a dog. J. Comp. Pathol. 97:609–614; 1987.

    Article  PubMed  CAS  Google Scholar 

  58. Tateyama, S.; Cotchin, E. Electron microscopic observations on canine mixed mammary tumors, with special reference to cytoplasmic filamentous components. Am. J. Vet. Res. 39(9):1494–1500; 1978.

    PubMed  CAS  Google Scholar 

  59. Taylor, N.; Shifrine, M.; Wolf, H. G., et al. Canine osteosarcoma karyotypes from an original tumor its metastasis, and tumor cells in tissue culture. Transplant. Proc. 7:485–492; 1975.

    PubMed  CAS  Google Scholar 

  60. Terada, N.; Yamamoto, R.; Uchida, N., et al. Development of cartilage-hke tissue from androgen-dependent Shionogi carcinoma 115 in androgen-depleted hosts. Lab. Invest. 57(2):186–192; 1987.

    PubMed  CAS  Google Scholar 

  61. Terada, N.; Yamamoto, R.; Uchida, N., et al. Development of spindle-shaped cells and chondroid cells from androgen-dependent Shionogi carcinoma 115. A light and electron microscopic study. Acta Pathol. Jpn. 38(11):1405–1416; 1988.

    PubMed  CAS  Google Scholar 

  62. Thomas, S. E.; Thomas, N.; Pierrepoint, C. G. Growth and histology of four canine mammary tumour lines established in nude mice. Eur. J. Cancer Clin. Oncol. 19(7):979–987; 1983.

    Article  PubMed  CAS  Google Scholar 

  63. Tulusan, A. H.; Hamann, M.; Prestele, H., et al. Correlations of the receptor content ultrastructure of breast cancer cells. Arch. Gynecol. 231:177–184; 1982.

    Article  PubMed  CAS  Google Scholar 

  64. Uyterhnde, A. M.; Schipper, N. W.; Baak, J. P. A., et al. Limited prognostic value of cellular DNA content to classical and morphometncal parameters in invasive ductal breast cancer. Am. J. Clin. Pathol. 89(3):301–307; 1988.

    Google Scholar 

  65. Van der Linden, J. C.; Lindeman, J.; Baak, J. P. A., et al. The multivanate prognostic index and nuclear DNA content are independent prognostic factors in primary breast cancer patients. Cytometry 10:56–61; 1989.

    Article  PubMed  Google Scholar 

  66. Warburton, M. J.; Ferns, S. A.; Hughes, C. M., et al. Generations of cell types with myoepithelial and mesenchymal phenotypes during the conversion of rat mammary tumor epithelial stem cells into elongated cells. JNCI 78(6):1191–1201; 1987.

    PubMed  CAS  Google Scholar 

  67. Whitehead, R. H.; Bertoncello, I.; Webber, L. M., et al. A new human breast carcinoma cell line (PMC42) with stem cell characteristics. I. Morphologic characterization. JNCI 70(4):649–661; 1983.

    CAS  Google Scholar 

  68. Whitehead, R. H.; Monaghan, P.; Webber, L. M., et al. A new human breast carcinoma cell line (PMC42) with stem cell characteristics. II. Characterization of cell growing as organoids. JNCI 71(6):1193–1203; 1983.

    CAS  Google Scholar 

  69. Vindelöv, I. L.; Chnstensen, I. J.; Nissen, N. I. A detergent-trypsin method for the preparation of nuclei for flow cytometnc DNA analysis. Cytometry 3(5):323–327; 1983.

    Article  PubMed  Google Scholar 

  70. Wolfe, L. G.; Smith, B. B.; Toivio-Kinnucan, M. A., et al. Biologic properties of cell lines derived from canine mammary carcinomas. JNCI 77(3):783–792; 1986.

    PubMed  CAS  Google Scholar 

  71. Wolman, S. R. Karyotypic progression in human tumors. Cancer Metastasis Rev. 2:257–293; 1983.

    Article  PubMed  CAS  Google Scholar 

  72. Wolman, S. R.; Smith, H. S.; Stampfer, M., et al. Growth of diploid cells from breast cancer. Cancer Genet. Cytogenet. 16:49–64; 1985.

    Article  PubMed  CAS  Google Scholar 

  73. Yunis, J. J. The chromosomal basis of neoplasm. Science 221:227–236; 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HellmÉn, E. Characterization of four in vitro established canine mammary carcinoma and one atypical benign mixed tumor cell lines. In Vitro Cell Dev Biol - Animal 28, 309–319 (1992). https://doi.org/10.1007/BF02877054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02877054

Key words

Navigation