Skip to main content
Log in

Green composites. II. Environment-friendly, biodegradable composites using ramie fibers and soy protein concentrate (SPC) resin

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65 % (on weight basis) ramie fibers and SPC resin. The tensile strength and Young’s modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young’s modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Kokta, R. Chen, C. Daneault, and J. L. Valade,Polym. Compos.,4, 229 (1983).

    Article  CAS  Google Scholar 

  2. C. Pavithran, P. S. Mukjerjee, M. Brahmakumar, and A. D. Damodaran,J. Mater. Sci.,26, 455 (1991).

    Article  CAS  Google Scholar 

  3. K. Joseph, S. Thomas, C. Pavithran, and M. Brahmakumar,J. Appl. Polym. Sci.,47, 1731 (1993).

    Article  CAS  Google Scholar 

  4. The Corporate Units in the Daimler-Benz Group,Daimler-Benz High Tech Report,2, 1 (1995).

    Google Scholar 

  5. A. K. Mohanty and M. Misra,Polym-Plast. Technol. Eng.,34, 729 (1995).

    Article  CAS  Google Scholar 

  6. K. Joseph, S. Thomas, and C. Pavithran,Polymer,37, 5139 (1996).

    Article  CAS  Google Scholar 

  7. J. H. Pedro and D. J. A. Manuel,J. Appl. Polym. Sci.,65, 197 (1997).

    Article  Google Scholar 

  8. M. Wollerdorfer and H. Bader,Industrial Crops and Products,8, 105 (1998).

    Article  CAS  Google Scholar 

  9. S. Luo and A. N. Netravali,J. Mater. Sci.,34, 3709 (1999).

    Article  CAS  Google Scholar 

  10. S. Luo and A. N. Netravali,Polym. Composite.,20, 367 (1999).

    Article  CAS  Google Scholar 

  11. A. K. Mohanty, M. Misra, and G. Hinrichsen,Macromol. Mater. Eng.,276, 1 (2000).

    Article  Google Scholar 

  12. S. Luo and A. N. Netravali,J. Adhes. Sci. Technol.,15, 423 (2001).

    Article  CAS  Google Scholar 

  13. P. Lodha and A. N. Netravali,J. Mater. Sci.,37, 3657 (2002).

    Article  CAS  Google Scholar 

  14. S. Nam, M.S. Thesis, Cornell University, Ithaca, 2002.

    Google Scholar 

  15. S. Nam and A. N. Netravali,J. Adhes. Sci. Technol.,18, 1063 (2004).

    Article  CAS  Google Scholar 

  16. P. Lodha and A. N. Netravali,Polym. Compos.,26, 647 (2005).

    Article  CAS  Google Scholar 

  17. P. Lodha and A. N. Netravali,Compos. Sci. Technol.,65, 1211 (2005).

    Article  CAS  Google Scholar 

  18. S. Chabba and A. N. Netravali,J. Mater. Sci.,40, 6263 (2005).

    Article  CAS  Google Scholar 

  19. S. Chabba and A. N. Netravali,J. Mater. Sci.,40, 6275 (2005).

    Article  CAS  Google Scholar 

  20. S. Nam and A. N. Netravali,Fibers and Polymers,7, 372 (2006).

    CAS  Google Scholar 

  21. Y.-P. Ly, L. A. Johnson, and J. Jane, “Biopolymers from Renewable Resources” (D. L. Kaplan Ed.), p.144, Springer, New York, 1998.

    Google Scholar 

  22. T. E. Creighton, “Proteins: Structure and Molecular Properties”, 2nd ed. p. 1, Freeman, New York, 1993.

    Google Scholar 

  23. J. C. Cheftel, J.-L. Cuq, and D. Lorient, “Food Chemistry” (O. R. Fennema Ed.), pp.245, 279, 289, 336, and 343, Marcel Dekker Inc, New York, 1985.

    Google Scholar 

  24. F. Liang, Y. Q. Wang, and X. S. Sun,J. Polym. Eng.,19, 383 (1999).

    CAS  Google Scholar 

  25. J. J. Kester and O. R. Fennema,Food Technol.,40, 47 (1986).

    CAS  Google Scholar 

  26. I. Paetau, C. Z. Chen, and J. L. Jane,Ind. Eng. Chem. Res.,33, 1821 (1994).

    Article  CAS  Google Scholar 

  27. A. Gennadios, V. M. Ghorpade, C. L. Weller, and M. A. Hanna,Trans. ASAE,39, 575 (1996).

    CAS  Google Scholar 

  28. S. F. Thames and L. Zhou “Proceedings of the International Conference on Composites Engineering-5”, Las Vegas, p.887, 1998.

  29. A. Gennadios, A. H. Brandenburg, C. L. Weller, and R. F. Testin,J. Agric. Food Chem.,41, 1835 (1993).

    Article  CAS  Google Scholar 

  30. H. M. Lai, G. W. Padua, and A. H. Wei,Cereal Chem,74, 49 (1995).

    Google Scholar 

  31. X. Z. Sun and K. Bian,J. Am. Oil. Chem. Soc.,76, 977 (1999).

    Article  CAS  Google Scholar 

  32. J. W. Rhim, A. Gennadios, A. Handa, C. L. Weller, and M. A. Hanna,J. Agric. Food Chem.,48, 4937 (2000).

    Article  CAS  Google Scholar 

  33. F. Ayhllon-Meixueiro, C. Vaca-Garcia, and F. Silvestre,J. Agric. Food Chem.,48, 3032 (2000).

    Article  CAS  Google Scholar 

  34. X. Q. Mo, J. Hu, X. S. Sun, and J. A. Ratto,Ind. Crop. Prod.,14, 1 (2001).

    Article  CAS  Google Scholar 

  35. X. Q. Mo and X. Z. Sun,J. Am. Oil. Chem. Soc.,78, 867 (2001).

    Article  CAS  Google Scholar 

  36. N. S. Hettiarachchy, U. Kalapathy, and D. J. Myers,J. Am. Oil. Chem. Soc.,72, 1461 (1995).

    Article  CAS  Google Scholar 

  37. X. Z. S. Sun, H. R. Kim, and X. Q. Mo,J. Am. Oil. Chem. Soc.,76, 117 (1999).

    Article  CAS  Google Scholar 

  38. J. Gueguen, G. Viroben, P. Noireaux, and M. Subirade,Ind. Crop. Prod.,7, 149 (1998).

    Article  CAS  Google Scholar 

  39. R. N. Obrien and K. Hartman,J. Polym. Sci. Part C Polymer Symposium,34, 293 (1971).

    Google Scholar 

  40. B. D. Agarwal and L. J. Broutman, “Analysis and Performance of Fiber Composites”, p.15, John Wiley & Sons, New York, 1980.

    Google Scholar 

  41. D. Hull, “An Introduction to Composite Materials”, pp. 36–38, Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  42. B. D. Harper, G. H. Staab, and R. S. Chen,J. Compos. Mater.,21, 280 (1987).

    Article  CAS  Google Scholar 

  43. J. M. Tang, W. I. Lee, and G. S. Springer,J. Compos. Mater.,21, 421 (1987).

    Article  CAS  Google Scholar 

  44. F. Garcia-Zetina, E. Martinez, A. Alvarez-Castillo, and V. M. Castano,J. Reinf. Plast. Comp.,14, 641 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil N. Netravali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, S., Netravali, A.N. Green composites. II. Environment-friendly, biodegradable composites using ramie fibers and soy protein concentrate (SPC) resin. Fibers Polym 7, 380–388 (2006). https://doi.org/10.1007/BF02875770

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875770

Keywords

Navigation