Skip to main content
Log in

Sprout inhibition in storage: Current status, new chemistries and natural compounds

  • Invited Review
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

A major component of managing potato quality in storage is effective sprout inhibition. Sprouting causes increased weight loss, reduced tuber quality and impedes air movement through the potato pile. The primary method to control sprouting in storage is with postharvest applications of isopropylN-(3-chlorophenyl) carbamate (chlorpropham; CIPC). CIPC inhibits sprout development by interfering with cell division. However, a recent Environmental Protection Agency mandate, from the requirements of the Food Quality Protection Act (FQPA) of 1996, resulted in a reduction in allowable CIPC residue on fresh potatoes in the United States from 50 ppm to 30 ppm.

This mandate coincides with tolerance reductions or restrictions for use of CIPC in other parts of the world. CIPC is an effective sprout inhibitor although factors such as storage conditions, application technology, and cultivar can impact that effectiveness. Alternative sprout inhibitors to CIPC continue to be evaluated. Essential oils (e.g., caraway, peppermint, spearmint, clove) or their components (e.g., s-carvone, eugenol), and hydrogen peroxide-based materials, physically damage the developing sprout and suppress sprout elongation. However, repeated or continuous application of these compounds may be necessary for efficacy. Substituted naphthalenes (e.g., dimethyl naphthalene, diisopropyl naphthalene) may help reduce the amount of CIPC applied and/or our dependency on CIPC for sprout suppression in storage. The objective of this review is to summarize the current use of CIPC for potato sprout inhibition in storage and to review the status of current research on other postharvest applied compounds or materials that may be used as alternatives for CIPC.

Resumen

Uno de los componentes mas importantes en el manejo de la calidad de la papa almacenada es la inhibición del brotamiento. El brotamiento produce un incremento en la pérdida de peso, tubérculos de baja calidad e impide el movimiento de aire a través de las pilas de papa almacenada. El método principal para el control del brotamiento en el almacén es la aplicación de isopropilN-(3-clorofenil) carbamato (clorprofam; CIPC). El CIPC inhibe el desarrollo de los brotes porque interfiere con la división celular. Sin embargo, un mandate reciente sobre requisites de la Agencia de Protección Ambiental, en el Acta de Protección de la Calidad de los Alimentos (FQPA) de 1996, dio como resultado la reducción de 50 ppm a 30 ppm de residuos de CIPC, permisible en la papa fresca para consumo en los Estados Unidos.

Este mandato coincide con las reducciones de tolerancia o de restricciones para el uso de CIPC en otras partes del mundo. El CIPC es un inhibidor efectivo del brotamiento, aunque factores tales como, condiciones de almacenaje, tecnologia de aplicación y el cultivar mismo pueden tener impacto sobre esa efectividad. Los aceites esenciales (por ejemplo, de la alcaravea, de diferentes closes de menta y del clavo de olor), o sus componentes (tales como el s-carvone, eugenol) y materiales con base de peróxido de hidrógeno, deteriorait físicamente los brotes en desarrollo y suprimen su alargamiento. Sin embargo, para su eficacia pueden ser necesarias repetidas o continuas aplicaciones de estos compuestos. En reemplazo, se puede reducir la cantidad de CIPC aplicada y/o la dependencia en el CIPC para supresión del brotamiento en el almacén utilizando naftalenos (tales como dimetil naftaleno, diisopropil naftaleno). El objetivo de esta revisión es resumir el uso actual del CIPC como inhibidor del brotamiento de las papas almacenadas y hacer un examen de la situación actual de la investigación sobre otros compuestos aplicados, después de la cosecha o materiales que puedan ser utilizados como una alternativa para el CIPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Afek U, J Orenstein, and E Nuriel. 2000. Using HPP (Hydrogen Peroxide Plus) to inhibit potato sprouting during storage. Am J Potato Res 77:63–65.

    CAS  Google Scholar 

  • Alam SMM, DP Murr, and L Kristof. 1994. The effect of ethylene and of inhibitors of protein and nucleic acid synthesis on dormancy break and subsequent sprout growth. Potato Res 37:25–33.

    Article  CAS  Google Scholar 

  • Aliaga TJ, and W Feldheim. 1985. Inhibition of sprouting of stored potatoes by the essential oil of the Muna Plant (Minthostachys species) from South America. Ernahrung 9:254–256.

    CAS  Google Scholar 

  • Anonymous. 2001. DECCO 271 Aerosol Potato Sprout Inhibitor Label. Elf Atochem North America. Monrovia, CA, USA. pp 1–2.

  • Beveridge JL, J Dalziel, and HJ Duncan. 1981a. The assessment of some volatile organic compounds as sprout suppressants for ware and seed potatoes. Potato Res 24:61–76.

    Article  CAS  Google Scholar 

  • Beveridge JL, J Dalziel, and HJ Duncan. 1981b. Dimethylnaphthalene as a sprout suppressant for seed and ware potatoes. Potato Res 24:77–88.

    Article  CAS  Google Scholar 

  • Beveridge JL, J Dalziel, and HJ Duncan. 1983. Headspace analysis of laboratory samples of potato tubers treated with 1,4-dimethylnaphthalene, carvone, pulegone and citral. J Sci Food Agric 34:164–168.

    Article  CAS  Google Scholar 

  • Brandt TL, GE Kleinkopf, NL Olsen, and S Love. 2003. Storage management for Umatillia Russet potatoes. University of Idaho, College of Agricultural and Life Sciences, Bulletin 839.

  • Burton WG. 1958. Experiments on the use of alcohol vapours to suppress the sprouting of stored potatoes. Eur Potato J 1:42–51.

    Article  Google Scholar 

  • Buta JG, and HE Moline. 1998. Methyl jasmonate extends shelf life and reduces microbial contamination of fresh-cut celery and peppers. J Agric Food Chem 46:1253–1256.

    Article  CAS  Google Scholar 

  • Caccioni DR, and M Guizzardi. 1994. Inhibition of germination and growth of fruit and vegetable postharvest pathogenic fungi by essential oil components. J Essent Oil Res 6:173–179.

    CAS  Google Scholar 

  • Caldiz DO, LV Fernandez, and MH Inchausti. 2001. Maleic hydrazide effects on tuber yield, sprouting characteristics, and French fry processing quality in various potato (Solanum tuberosum L.) cultivars grown under Argentinian conditions. Am J Potato Res 78:119–128.

    CAS  Google Scholar 

  • Coleman WK. 1998. Carbon dioxide, oxygen and ethylene effects on potato tuber dormancy release and sprout growth. Ann Bot 82:21–27.

    Article  CAS  Google Scholar 

  • Coleman WK, G Lonergan, and P Silk. 2001. Potato sprout growth suppression by menthone and neomenthol, volatile oil components ofMinthostachys, Satureja, andMentha species. Am J Potato Res 78:345–354.

    CAS  Google Scholar 

  • Corsini D, G Stallknecht, and W Sparks. 1979. Changes in chlorpropham residues in stored potatoes. Am Potato J 56:43–50.

    Article  CAS  Google Scholar 

  • Daniels-Lake BJ, RK Prange, W Kalt, CL Liew, J Walsh, P Dean, and R Coffin. 1996. The effects of ozone and 1,8-cineole on sprouting, fry color and sugars of stored Russet Burbank potatoes. Am Potato J 73:469–181.

    Article  CAS  Google Scholar 

  • de Vries RG. 1999. Sprout inhibiting and/or anti-fungal composition for potatoes. U.S. Patent 6,001,773 issued 14 December 1999.

  • Denisen EL. 1953. Response of Kennebec potatoes to maleic hydrazide. Proc Am Soc Hort Sci 62:411–421.

    CAS  Google Scholar 

  • Droby S, R Porat, L Cohen, B Weiss, B Shapiro, S Philsoph-Hadas, and S Meir. 1999. Suppressing green mold decay in grapefruit with postharvest methyl jasmonate application. J Am Soc Hort Sci 124:184–188.

    CAS  Google Scholar 

  • Elmer OH. 1932. Growth inhibition of potato sprouts by the volatile products of apple. Science 75:193.

    Article  PubMed  CAS  Google Scholar 

  • Farag RS, ZY Daw, and SH Abo-Raya. 1989. Influence of some spice essential oils onAspergillus parasiticus growth and production of aflatoxins in a synthetic medium. J Food Sci 54:74–76

    Article  CAS  Google Scholar 

  • Farooqi AHA, KK Agarwal, S Fatima, A Ahmad, S Sharma, and S Kumar. 2001. Anti-sprouting agent for potato tuber and a method for producing the same. U.S. Patent 6,313,073 issued 6 November 2001.

  • Filmer AA, and DC Land. 1978. The accumulation of volatile substances in a large modern potato store. J Sci Food Agric 29:219.

    Article  CAS  Google Scholar 

  • Filmer AAE, and JC Rhodes. 1984. An assessment of 1,4,6-trimethylnaphthalene as a sprout suppressant for stored potato tubers. Potato Res 27:383–392.

    Article  CAS  Google Scholar 

  • Filmer AAE, and JC Rhodes. 1985. Investigation of sprout-growthinhibitory compounds in the volatile fraction of potato tubers. Potato Res 28:361–377.

    Article  CAS  Google Scholar 

  • Forsythe D, and JM Forsythe. 2002. Methods for treating potatoes. U.S. Patent 6,375,999 Bl issued 23 April 2002.

  • Franklin EW, and NR Thompson. 1953. Some effects of maleic hydrazide on stored potatoes. Am Potato J 30:289–295.

    Article  CAS  Google Scholar 

  • Frazier MJ, GE Kleinkopf, and TL Brandt. 1998. Effects of spearmint and peppermint oil used as alternative sprout and disease suppressants. Am J Potato Res 75:276. (abst)

    Google Scholar 

  • Frazier MJ, GE Kleinkopf, and TL Brandt. 2000. Spearmint oil and peppermint oil used as alternative sprout suppressants. Am J Potato Res 77:399. (abst)

    Google Scholar 

  • Gichohi EG, and MK Pritchard. 1995. Storage temperature and maleic hydrazide effects on sprouting, sugars and fry color of Shepody potatoes. Am Potato J 72:737–747.

    Article  CAS  Google Scholar 

  • Guenthner JF, MV Wiese, AD Pavlista, JB Sieczka, and J Wyman. 1999. Assessment of pesticide use in the U.S. potato industry. Am J Potato Res 76:25–29.

    Google Scholar 

  • Heikes DL. 1985. Mass spectral identification of a metabolite of chlorpropham in potatoes. J Agric Food Chem 33:246–249.

    Article  CAS  Google Scholar 

  • Highlands ME, JJ Licciiardello, and CE Cunningham. 1952. Reducing sugar content of Maine-grown potatoes treated with maleic hydrazide. Am Potato J 29:255–227.

    Article  Google Scholar 

  • Hughes DL, B Takahashi, H Timm, and M Yamaguchi. 1973. Influence of ethylene on sprout development of seed tubers. Am Potato J 50:439–444.

    Article  CAS  Google Scholar 

  • Jeong J-C, RK Prange, and BJ Daniels-Lake. 2002. Long-term exposure to ethylene affects polyamine levels and sprout development in ‘Russet Burbank’ and ‘Shepody’ potatoes. J Am Soc Hort Sci 127:122–126.

    CAS  Google Scholar 

  • Kader AA 1985. Ethylene-induced senescence and physiological disorders in harvested horticultural crops. Hort Sci 20:54–57.

    CAS  Google Scholar 

  • Kameyama K, and H Ito. 2000. Twenty-six years of commercialization on potato irradiation at Shihoro, Japan. Radiation Physics and Chemistry 57:227–230.

    Article  CAS  Google Scholar 

  • Kim ML, EE Ewing, and JG Sieczka. 1972. Effects of chlorpropham on sprouting of individual potato eyes and on plant emergence. Am Potato J 49:420–431.

    Article  CAS  Google Scholar 

  • Kim-Kang H. 1991. Metabolism of C-14 chlorpropham in stored potatoes-nature of the residue in potatotes. XenoBiotic Laboratories, Inc. Report No. RPT0066.

  • Kleinkopf GE, TL Brandt, MJ Frazier, and G Moller. 1997. CIPC residues on stored Russet Burbank potatoes: 1. Maximum label application. Am Potato J 74:107–117.

    Article  CAS  Google Scholar 

  • Kleinkopf GE, and MJ Frazier. 2002. Alternative sprout suppressants for stored potatoes. University of Idaho, College of Agricultural and Life Sciences. Proceedings: Winter Commodity Schools 34:183–187.

    Google Scholar 

  • Lewis MD, GE Kleinkopf, and KK Shetty. 1997. Dimethylnaphthalene and diisopropylnaphthalene for sprout control in storage: 1. Application methodology and efficacy. Am Potato J 74:183–197.

    Article  CAS  Google Scholar 

  • Lulai E, PH Orr, and MT Glynn. 1995. Natural suppression of sprouting in stored potatoes using jasmonates. U.S. Patent 5,436,226 issued 25 July 1995.

  • Lulai E, PH Orr, and MT Glynn. 1997. Suppression of sprouting in stored potatoes using aromatic acids. U.S. Patent 5,635,452 issued 3 June 1997.

  • Marth PC, and ES Shultz. 1952. A new sprout inhibitor for potato tubers. Am Potato J 29:268–278.

    Article  CAS  Google Scholar 

  • Masefield J, and GR Dietz. 1983. Food irradiation: the evaluation of commercial opportunities. CRC Crit Rev Food Sci Nutr 19:259–272.

    CAS  Google Scholar 

  • Meigh DF. 1969. Suppression of sprouting in stored potatoes by volatile organic compounds. J Sci Food Agric 20:159–164.

    Article  Google Scholar 

  • Meigh DF, AAE Filmer, and R Self. 1973. Growth-inhibitory volatile aromatic compounds produced bySolanum tuberosum tubers. Phytochem 12:987–993.

    Article  CAS  Google Scholar 

  • Moroby BL, and WF Sun. 1987. Isolation and identification of chlorpropham and two of its metabolites in potatoes by GC-MS. Chemosphere 16:1457–1462.

    Article  Google Scholar 

  • Morgan CR. 1989. Apparatus for applying sprout inhibitor to stored potatoes. U.S. Patent No. 4,887,525 Issued 19 December 1989.

  • Oberg NA. 2000. Effect of methyl jasmonate and anisic acid on stored potato tuber quality. M.S. Thesis. College of Agriculture, University of Idaho, Moscow, ID.

    Google Scholar 

  • Oberg NA, and GE Kleinkopf. 2000. Effect of methyl jasmonate on stored potato quality. Am J Potato Res 77:414. (abst)

    Google Scholar 

  • Oosterhaven K, KJ Hartmans, and JJC Scheffer. 1995a Inhibition of potato sprout growth by carvone enantiomers and their bioconversion in sprouts. Potato Res 38:219–230.

    Article  CAS  Google Scholar 

  • Oosterhaven K, KJ Hartmans, JJC Scheffer, and LHW van der Plas. 1995b. Inhibitory effect of S-carvone on wound healing of potato tuber tissue. Physiologia Plant 93:225–232.

    Article  CAS  Google Scholar 

  • Parthier B. 1991. Jasmonates, new regulators of plant growth and development: many facts and a few hypothesis on their actions. Bot Acta 104:446–454.

    CAS  Google Scholar 

  • Paterson DR, SH Wittwer, LE Weller, and HM Sell. 1952. The effect of preharvest foliar sprays of maleic hydrazide on sprout inhibition and storage quality of potatoes. Plant Physiol 27:135–142.

    PubMed  CAS  Google Scholar 

  • Prange R, W Kalt, B Daniels-Lake, C Liew, J Walsh, P Dean, R Coffin, and R Page. 1997. Alternatives to currently used potato sprout suppressants. Postharvest News and Information 8(3):37–41.

    Google Scholar 

  • Prange RK, W Kalt, BJ Daniels-Lake, CL Liew, RT Page, JR Walsh, P Dean, and R Coffin. 1998. Using ethylene as a sprout control agent in stored ‘Russet Burbank’ potatoes. J Am Soc Hort Sci 123:463–469.

    CAS  Google Scholar 

  • Riggle BD, and RK Schafer. 1997. Sprout inhibition compositions comprising chlorpropham and substituted naphthalenes and methods of using same. U.S. Patent 5,622,912 issued 22 April 1997.

  • Rosa JT. 1925. Shortening the rest period of potatoes with ethylene gas. Potato Association of America, Potato News Bulletin 2:363–365.

    Google Scholar 

  • Rylski I, L Rappaport, and HK Pratt. 1974. Dual effects of ethylene on potato dormancy and sprout growth. Plant Physiology 53:658–662.

    PubMed  CAS  Google Scholar 

  • Sembdner G, and B Parthier. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Ann Rev Plant Physiol Plant Mol Biol 44:569–589.

    Article  CAS  Google Scholar 

  • Slininger PJ, KD Burkhead, DA Schisler, and RJ Bothast. 2000. Biological control of sprouting in potatoes. U.S. Patent 6,107,247 issued 22 August 2000.

  • Sorce C, R Lorenzi, and P Ranalli. 1997. The effects of (S)-(+)-carvone treatments on seed potato tuber dormancy and sprouting. Potato Res 40:155–161.

    Article  CAS  Google Scholar 

  • Sparks WC. 1984. Effect of maleic hydrazide on the yield, grade, quality, and sprout inhibition of various potato varieties. Proc of the Winter Commodity Schools, Pocatello, ID. Univ of Idaho, College of Agriculture, Moscow, ID. pp. 182–185.

    Google Scholar 

  • Stephen NH, and HJ Duncan. 1984. Potato sprout suppressant activity of some substituted naphthalenes. Proc 9th Trienn Conf EAPR, Interlaken pp. 321–322.

  • Struckmeyer BE, GG Weis, and JA Schoenemann. 1981. Effect of two forms of maleic hydrazide on the cell structure at the midsection, stem and bud ends of the cortical and perimedullary regions of Russet Burbank tubers. Am Potato J 58:611–618.

    Article  Google Scholar 

  • Suttle JC. 2000. The role of endogenous hormones in potato tuber dormancyIn: JD Viemont and J Crabbe (eds), Dormancy in Plants—From Whole Plant Behaviour to Cellular Control. CAB International, New York. pp 211–226.

    Google Scholar 

  • Thomas P. 1983. Radiation preservation of foods of plant origin. Part 1. Potatoes and other tuber crops. CRC Crit Rev Food Sci Nutr 19:327–379.

    Article  Google Scholar 

  • Thompson DP. 1989. Fungitoxic activity of essential oil components on food storage fungi. Mycologia 81:151–153.

    Article  CAS  Google Scholar 

  • Timm H, DL Hughes, and ML Weaver. 1986. Effect of exposure time of ethylene on potato sprout development. Am Potato J 63:655–666.

    Article  Google Scholar 

  • Urbain WM. 1989. Food irradiation: the past fifty years as prologue to tomorrow. Food Technol 43:76,92.

    Google Scholar 

  • Vanden Berg JH, and EE Ewing. 1991. Jasmonates and their role in plant growth and development, with special reference to the control of potato tuberization: a review. Am Potato J 68:781–794.

    Article  Google Scholar 

  • Vaughn KC, and LP Lehnen. 1991. Mitotic disrupter herbicides. Weed Sci 39:450–457.

    CAS  Google Scholar 

  • Vaughn SF, and GF Spencer. 1991. Volatile monoterpenes inhibit potato tuber sprouting. Am Potato J 68:821–831.

    Article  CAS  Google Scholar 

  • Vaughn SF, GF Spencer, and RG Powell. 1992. Inhibition of potato spouting using volatile monoterpenes. U.S. Patent No. 5,139,562 issued 18 August 1992.

  • Vaughn SF, and GF Spencer. 1993. Naturally-occurring aromatic compounds inhibit potato tuber sprouting. Am Potato J 70:527–533.

    Article  CAS  Google Scholar 

  • Vaughn SF, and GF Spencer. 1994. Antifungal activity of natural compounds against thiabendazole-resistantFusarium sambucinum strains. J Agric Food Chem 42:200–203.

    Article  CAS  Google Scholar 

  • Vokou D, S Vareltzidou, and P Katinakis. 1993. Effects of aromatic plants on potato storage: sprout suppression and antimicrobial activity. Agric Eco Env 47:223–235.

    Article  Google Scholar 

  • Wang CY, JG Buta, HE Moline, and HW Hruschka. 1980. Potato sprout inhibition by camptothecin, a naturally occurring plant growth regulator. J Am Soc Hort Sci 105:120–124.

    CAS  Google Scholar 

  • Weis GG, JA Schoenemann, and MD Groskopp. 1980. Influence of time of application of maleic hydrazide on the yield and quality of Russet Burbank potatoes. Am Potato J 57:197–204.

    Article  Google Scholar 

  • Wessel PNF, and R Wustman. 1990. Sprout inhibiting effects of a propham-chlorpropham mixture and its residue pattern in ware potatoes stored under warm conditions. Trop Agric 67:262–266.

    CAS  Google Scholar 

  • Yada RY, RH Coffin, MK Keenan, M Fitts, C Dufault, and GCC Tai. 1991. The effect of maleic hydrazide (potassium salt) on potato yield, sugar content and chip color of Kennebec and Norchip cultivars. Am Potato J 68:705–709.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gale E. Kleinkopf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinkopf, G.E., Oberg, N.A. & Olsen, N.L. Sprout inhibition in storage: Current status, new chemistries and natural compounds. Am. J. Pot Res 80, 317–327 (2003). https://doi.org/10.1007/BF02854316

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02854316

Additional key words

Navigation