Skip to main content
Log in

Marker-assisted genetic analysis of non-acclimated freezing tolerance and cold acclimation capacity in a backcrossSolarium population

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were used to construct a partial genetic linkage map in a potato backcross population. The population, derived from two diploid wildSolatium species (frost tolerant, able to cold acclimateS. commersonii; frost sensitive, unable to cold acclimateS. cardiophyllum), was used to map quantitative trait loci (QTL) of non-acclimated relative freezing tolerance (NARFT) and cold acclimation capacity (CAC). Precise assessment of these traits allowed distinction of small but significant differences among 35 backcross genotypes. NARFT and CAC were not correlated in the segregating population, suggesting independent genetic control for these two major components of freezing tolerance. The linkage map spanned 479.4 cM and included 77 RAPD markers and two SSR markers, with 38 RAPD and 10 SSR unassigned markers. Two QTLs for NARFT were detected in two different linkage groups, accounting for 44.0% of the phenotypic variation for this trait. Two QTLs for CAC were detected, accounting for 24.9% of the phenotypic variation for this trait. QTLs for NARFT and CAC were detected at separate genomic regions, in support of the independent genetic control of these two traits. QTLs for NARFT and CAC were detected in a linkage group identified as part of chromosome V, suggesting that such chromosome constitutes a prime candidate for fine-mapping. Due to the relatively small progeny size evaluated in this study, additional QTLs for NARFT and CAC could have been involved but not identified. Therefore, the conclusions derived from this study should be considered preliminary.

Resumen

Marcadores de DNA polimórfico amplificado al azar (RAPD) y de secuencias simples repetidas (SSR) fueron utilizadas para construir un mapa parcial de ligamiento genético en una población de retro-cruza de papa. Esta población fue derivada de dos especies silvestres diploides,S. commersonii (resistente a heladas, capaz de acclimatarse a bajas temperaturas) yS. cardiophyllum (sensible a heladas, incapaz de aclimatarse a bajas temperaturas), y se utilizó para mapear loci de carácteres cuantitativos (QTL) para la tolerancia relativa a heladas sin aclimatación a bajas temperaturas (NARFT) y la capacidad de aclimatarse a bajas temperaturas (CAC). La determinacién precisa de estos dos caracteres permitió encontrar diferencias pequeñas pero significativas entre los 35 genotipos de la retro-cruza. La correlación entre NARFT y CAC no fue significativa en la población segregante, sugieriendo que existe un control genético independiente para cada uno de estos dos componentes mayores de la tolerancia a heladas. El tamaño del mapa fue de 479.4cM e incluyó 77 marcadores RAPD y dos marcadores SSR; con 38 marcadores RAPD y 10 marcadores SSR sin asignar. Para NARFT, dos QTLs fueron detectados en dos diferentes grupos de ligamiento representando 44.0% de la variación fenotípica observada en este carácter. Para CAC, dos QTLs fueron detectados, los cuales representaron 24.9% de la variación fenotípica observada en este carácter. Los QTLs para NARFT y CAC fueron detectados en diferentes regiones genomicas, confirmando el control genético independiente de estos dos caracteres. Los QTLs para NARFT y CAC fueron detectados en un grupo de ligamiento identificado como parte del cromosoma V, sugiriendo que dicho cromosoma podria ser un candidato principal para mapeo fino. Debido a que el tamano de la población evaluada en este estudio fue relativamente pequeño, QTLs adicionales para NARFT y CAC podrían existir. En consecuencia, las conclusiones derivadas de este estudio deben ser consideradas como preliminares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACCRFT:

acclimated relative freezing tolerance

BC:

backcross

bp:

base pair

CAC:

cold acclimation capacity

GA:

gibberellic acid

LG:

linkage group

LOD:

logarithm of the odds

NARFT:

nonacclimated relative freezing tolerance

PAR:

photosynthetically active radiation

r:

recombinant fraction

RFT:

relative freezing tolerance

Literature Cited

  • Arora R, LJ Rowland, G Panta, CC Lim, JS Lehman, and N Vorsa. 1998. Genetic control of hardiness in blueberry.In: PH Li and HH Chen (eds), Plant Cold Hardiness: Molecular Biology, Biochem-istry and Physiology. Plenum Press, New York, pp 99–106.

    Google Scholar 

  • Bonierbale MW, RL Plaisted, and SD Tanksley. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evo-lution in potato and tomato. Genetics 120:1095–1103.

    PubMed  CAS  Google Scholar 

  • Byrne M, JC Murrel, JV Owen, ER Williams, and GF Moran. 1997. Map-ping of quantitative trait loci influencing frost tolerance inEuca-lyptus nitens. Theor Appl Genet 95:975–979.

    Article  CAS  Google Scholar 

  • Cai Q, CL Guy, and GA Moore. 1994. Extension of linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. Theor Appl Genet. 89:606–614.

    Article  CAS  Google Scholar 

  • Chen HH, andPH Li. 1980. Characteristics of cold acclimation and de-acclimation of tuber-bearingSolanum species. Plant Physiol 65:1146–1148.

    PubMed  CAS  Google Scholar 

  • Chen Y-KH, JB Bamberg, and JP Palta. 1999. Expression of freezing tol-erance in the interspecific Fl and somatic hybrids of potatoes. Theor Appl Genet 98:995–1004.

    Article  Google Scholar 

  • del Rio AH, JB Bamberg, and Z Huaman. 1997. Assessing changes in the genetic diversity of potato genebanks. 1. Effects of seed increase. Theor Appl Genet 95:191–198.

    Article  Google Scholar 

  • Dudley JW. 1993. Molecular markers in plant improvement: manipula-tion of genes affecting quantitative traits. Crop Sci 33:660–668.

    Article  CAS  Google Scholar 

  • Edwards MD, CW Stuber, and JF Wendel. 1987. Molecular-marker-facil-itated investigations of quantitative-trait loci in maize. I. Num-bers, genomic distribution and types of gene action. Genetics 116:113–125.

    PubMed  CAS  Google Scholar 

  • Edwards MD, T Helentjaris, S Wright, and CW Stuber. 1992. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. Theor Appl Genet 83:765–774.

    Article  CAS  Google Scholar 

  • Estrada RN, W Garcia, JG Carrasco, and E Carrasco. 1993. Breeding potatoes for tolerance to frost and resistance to late blight. Am Potato J70:809–810.

    Google Scholar 

  • Flint HL, BR Boyse, and DJ Beattie. 1967. Index of injury —a useful expression of freezing injury to plant tissues as determined by the electrolytic method. Can J Plant Sci 47:229–230.

    Article  Google Scholar 

  • Foolad MR, FQ Chen, and GY Lin. 1998. RFLP mapping of QTLs con-ferring cold tolerance during seed germination in an interspe-cific cross of tomato. Mol Breed 4:519–529.

    Article  CAS  Google Scholar 

  • Gebhardt C, E Ritter, T Debener, U Schachtschabel, B Walkemeier, H Uhrig, and F Salamini. 1989. RFLP analysis and linkage mapping inSolanum tuberosum. Theor Appl Genet 78:65–75.

    Article  Google Scholar 

  • Hosaka K. 1999. A genetic map of Solanum phureja Clone 1.22 con-structed using RFLP and RAPD markers. Am J Potato Res 75:97–102.

    Article  Google Scholar 

  • Jansky SH, GL Yerk, and SJ Peloquin. 1990. The use of potato haploids to put 2x wild species germplasm into usable form. Plant Breed 104:290–294.

    Article  Google Scholar 

  • Keats BJB, SL Sherman, NE Morton, EB Robson, KH Beutow, HM Cann, PE Cartwright, A Chakravarti, U Francke, PP Green, and J Ott. 1991. Guidelines for human linkage maps: An international sys-tem for human linkage maps (ISLM 1990). Genomics 9:557–560.

    Article  PubMed  CAS  Google Scholar 

  • Kole C, CE Thorman, BH Karlsson, JP Palta, P Gaffney, B Yandell, and TC Osborn. 2002. Comparative mapping of loci controlling win-ter survival and related traits in oilseedBrassica rapa andBras-sica napus. Mol Breed 9:201–210.

    Article  CAS  Google Scholar 

  • Kosambi DD. 1944. The estimation of map distances from recombina-tion values. Ann Eugen 12:172–175.

    Google Scholar 

  • Lande R, and R Thompson. 1990. Efficiency of marker-assisted selec-tion in the improvement of quantitative traits. Genetics 124:743–756.

    PubMed  CAS  Google Scholar 

  • Lander ES, and D Botstein. 1989. Mapping Mendelian factors underly-ing quantitative traits using RFLP linkage maps. Genetics 121:185–199.

    PubMed  CAS  Google Scholar 

  • Lander ES, P Green, J Abrahamson, A Barlow, MJ Daly, SE Lincoln, and L Newburg. 1987. Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.

    Article  PubMed  CAS  Google Scholar 

  • Li PH, and JP Palta. 1978. Frost hardening and freezing stress in tuber bearingSolanum species.In: PH Li and A Sakai (eds), Recent Advances in Plant Cold Hardiness and Freezing Stress: Mecha-nism and Crop Implications. Academic Press, New York. pp 49–71.

    Google Scholar 

  • Limin AE, and DB Fowler. 1991. Breeding for cold hardiness in winter wheat: problems, progress and alien gene expression. Field Crops Res 27:201–218.

    Article  Google Scholar 

  • Lincoln SE, and E Lander. 1989. Mapping genes controlling quantitative traits with MAPMAKER/QTL. Whitehead Institute for Bioméd-ical Research Technical Report, Cambridge.

  • Marshall HG. 1982. Breeding for tolerance to heat and cold.In: MN Christiansen and CJ Lewis (eds), Breeding Plants for Less Favorable Environments. J Wiley and Sons, New York, pp 47–49.

    Google Scholar 

  • Milbourne D, RC Meyer, AJ Collins, LD Ramsay, C Gebhardt, and R Waugh. 1998. Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol Gen Genet 259:233–245.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HT, RC Babu, and A Blum. 1997. Breeding for drought resist-ance in rice; physiology and molecular genetics considerations. Crop Sci 37:1426–1434.

    Article  Google Scholar 

  • Palta JP, and G Simon. 1993. Breeding potential for improvement of freezing stress resistance: genetic separation of freezing toler-ance, freezing avoidance, and capacity to cold acclimate.In: PH Li and L Christersson (eds), Advances in Plant Cold Hardiness. CRC Press, Boca Raton, pp 299–310.

    Google Scholar 

  • Palta JP, JB Bamberg, Y-K Chen, SE Vega, LS Weiss, and BH Karlsson. 1997. Understanding the genetic control of freezing stress resist-ance using potato species as a model system.In: PH Li and THH Chen (eds), Plant Cold Hardiness. Molecular Biology, Biochem-istry and Physiology. Plenum Press, New York, pp 67–75.

    Google Scholar 

  • Paterson AH, S Damon, JD Hewitt, D Zamir, HD Rabinowitch, SE Lin-coln, ES Lander, and SD Tanksley. 1991. Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations, and environments. Genetics 127:181–197.

    PubMed  CAS  Google Scholar 

  • Peloquin SJ, GL Yerk, JE Werner, and E Darmo. 1989. Potato breeding with haploids and 2n gametes. Genome 31:1000–1004.

    Google Scholar 

  • Ross RW, and PR Rowe. 1969. Utilizing the frost resistance of diploidSolanum species. Am Potato J 46:5–14.

    Google Scholar 

  • Rowland LJ, EL Ogden, R Arora, C-C Lim, JS Lehman, A Levi, and GR Panta. 1999. Use of blueberry to study genetic control of chilling requirement and cold hardiness in woody perennials. HortScience 34: 1185–1191.

    Google Scholar 

  • Saito K, K Miura, K Nagano, Y Hayano-Saito, H Araki, and A Kato. 2001. Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor Appl Genet 103:862–868.

    Article  CAS  Google Scholar 

  • Shahin E, and R Simpson. 1986. Gene transfer system for potato. HortScience 21:1199–1201.

    CAS  Google Scholar 

  • Shapiro SS, and MB Wilk. 1965. An analysis of variance for normality (complete samples). Biometrika 52:591–611.

    Google Scholar 

  • Steffen KL, R Arora, and J. Palta. 1989. Relative sensitivity of photo-synthesis and respiration to a freeze-thaw stress: role of realis-tic freeze-thaw protocol. Plant Physiol 89:1372–1379.

    PubMed  CAS  Google Scholar 

  • Stone JM, JP Palta, JB Bamberg, LS Weiss, and JF Harbage. 1993. Inher-itance of freezing resistance in tuber-bearingSolanum species: Evidence for independent genetic control of non-acclimated freezing tolerance and cold acclimation capacity. Proc Natl Acad Sci 90:7869–7873.

    Article  PubMed  CAS  Google Scholar 

  • Stushnoff C, DB Fowler, and A Brule-Babel. 1984. Breeding and selec-tion for resistance to low temperature.In: PB Vose and SG Blixt (eds), Crop Breeding: A Contemporary Basis. Pergamon Press, New York, pp 115–136.

    Google Scholar 

  • Sutka J. 1994. Genetic control of frost tolerance in wheat. Euphytica 77:277–282.

    Article  Google Scholar 

  • Teutonico RA, B Yandell, JM Satagopan, ME Ferreira, JP Palta, and TC Osborn. 1995. Genetic analysis and mapping of genes control-ling freezing tolerance in oilseedBrassica. Mol Breed 1:329–339.

    Article  CAS  Google Scholar 

  • Vega SE, and JB Bamberg. 1995. Screening the US potato collection for frost hardiness. Am Potato J 72:13–21.

    Google Scholar 

  • Vega SE, JP Palta, and JB Bamberg. 2000. Variability in the rate of cold acclimation and deacclimation among tuber-bearingSolanum (potato) species. J Am Soc Hort Sci 125:205–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwan P. Palta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, S.E., del Rio, A.H., Jung, G. et al. Marker-assisted genetic analysis of non-acclimated freezing tolerance and cold acclimation capacity in a backcrossSolarium population. Am. J. Pot Res 80, 359–369 (2003). https://doi.org/10.1007/BF02854247

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02854247

Additional Key Words

Navigation