Skip to main content
Log in

Dissolved nutrient fluxes through a sandy estuarine beachface (Cape Henlopen, Delaware, U.S.A.): Contributions from fresh groundwater discharge, seawater recycling, and diagenesis

Estuaries and Coasts Aims and scope Submit manuscript

An Erratum to this article was published on 16 April 2008

Abstract

The sandy beachface at Cape Henlopen, Delaware, receives dissolved nutrient inputs from fresh upland groundwater and estuarine seawater and exports nutrients through intertidal and submarine groundwater discharge. The discharge of brackish beachface waters indicates that there must be additional diagenetic nutrient sources and sinks within the porous beachface aquifer. At some times of the year, diagenetic processes within the beachface remove nitrate from waters draining the beachface consistent with the stoichiometry of either denitrification or dissimilatory nitrate reduction to ammonium. Up to 50–100% of the nitrate load from the upland groundwaters is apparently reduced to N2O/N2 gas or ammonium during these periods. At other times, ammonium and nitrate are added to beachface waters consistent with the stoichiometry of organic matter remineralization and nitrification. Dissolved reactive phosphorus and silica are similarly consumed and produced by beachface processes at different times of the year, presumably by adsorption or desorption. Infiltration of reactive estuarine particles may be an additional source of nutrients and carbon that supports the diagenetic activity in the beachface aquifer. These observations suggest that sandy beachfaces are biogeochemically reactive systems that can serve as sources, sinks, and temporary reservoirs of nutrients to support the primary and secondary production of the adjacent intertidal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Allen, A. E., M. G. Booth, M. E. Frischer, P. G. Verity, J. P. Zehr, andS. Zani. 2001. Diversity and detection of nitrate assimilation genes in marine bacteria.Applied and Environmental Microbiology 67:5343–5348.

    Article  CAS  Google Scholar 

  • An, S. andW. S. Gardner. 2002. Dissimilatoiy nitrate reductions to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas).Marine Ecology Progress Series 237:41–50.

    Article  CAS  Google Scholar 

  • Ataie-Ashtiani, B., R. E. Volker, andD. A. Lockington. 1999. Tidal effects on sea water intrusion in unconfined beaches.Journal of Hydrology 216:17–31.

    Article  Google Scholar 

  • Bock, M. J. andD. C. Miller. 1995. Storm effects on particulate food resources on an intertidal sandflat.Journal of Experimental Marine Biology and Ecology 187:81–101.

    Article  Google Scholar 

  • Boehm, A. B., A. Payton, G. G. Shellenbarger, andK. A. Davis. 2006. Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone.Continental Shelf Research 26:269–282.

    Article  Google Scholar 

  • Brunet, R. C. andL. J. Garcia-Gil. 1996. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments.FEMS Microbiology Ecology 21:131–138.

    Article  CAS  Google Scholar 

  • Burnett, W. C., H. Bokuniewicz, M. Huettel, W. S. Moore, andM. Taniguchi. 2003. Groundwater and pore water inputs to the coastal zone.Biogeochemistry 66:3–33.

    Article  CAS  Google Scholar 

  • Bussman, I., P. R. Dando, S. J. Niven, andE. Suess. 1999. Groundwater seepage in the marine environment: Role for mass flux and bacterial activity.Marine Ecology Progress Series 178: 169–177.

    Article  Google Scholar 

  • Canfield, D. E., E. Kristensen, andB. Thamdrup. 2005. Aquatic Geomicrobiology. Advances in Marine Biology, Volume 48. Elsevier, Amsterdam.

    Google Scholar 

  • Dale, R. K. 2006. Salinity, temperature, and macrofaunal communities in groundwater seeps. M.S. Thesis, University of Delaware, Lewes, Delaware.

    Google Scholar 

  • Dale, R. K. andD. C. Miller. 2007. Spatial and temporal patterns of salinity and temperature in an intertidal groundwater seep.Estuarine, Coastal, and Shelf Science 72:283–298.

    Article  Google Scholar 

  • Dalsgaard, T., B. Thamdrup, andD. E. Canfield. 2005. Anaerobic ammonium oxidation (anammox) in the marine environment.Research in Microbiology 156:457–464.

    Article  CAS  Google Scholar 

  • Davis, C. C., H. W. Chen, andM. Edwards. 2002. Modeling silica sorption to iron hydroxide.Environmental Science and Technology 36:582–587.

    Article  CAS  Google Scholar 

  • D’Elia, C. F., P. A. Steudler, andN. Corwin. 1977. Determination of total nitrogen in aqueous samples using persulfate digestion.Limnology and Oceanography 22:760–764.

    CAS  Google Scholar 

  • Destouni, G. andC. Prieto. 2003. On the possibility for generic modeling of submarine groundwater discharge.Biogeochemistry 66:171–186.

    Article  CAS  Google Scholar 

  • Dillow, J. J. A. and E. A. Greene. 1999. Groundwater discharge and nitrate loading to the coastal bays of Maryland. United States Geological Survey, Report of Investigations no. 99-4167. Reston, Virginia.

  • Engström, P., T. Dalsgaard, S. Hulth, andR. C. Aller. 2005. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments.Geochimica et Cosmochimica Acta 69:2057–2065.

    Article  CAS  Google Scholar 

  • Fetter, C. W. 1994. Applied Hydrogeology, 3rd edition. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Gehlen, M. andW. van Raaphorst. 2002. The role of adsorption-desorption surface reactions in controlling the interstitial Si(OH)4 concentrations and enhancing Si(OH)4 turnover in shallow shelf seas.Continental Shelf Research 22: 1529–1547.

    Article  Google Scholar 

  • Grasshoff, K. andJ. Johansen. 1972. A new sensitive and direct method for the automatic determination of ammonia in seawater.Journal de Conseil, Conseil International pour l’Exploration de la Mer 34:516–521.

    CAS  Google Scholar 

  • Hansen, H. C. B., B. Rabenlange, K. Raulundrasmussen, andO. K. Borggaard. 1994. Monosilicate adsorption by ferrihydrite and goethite at pH 3-6.Soil Science 158:40–46.

    Article  CAS  Google Scholar 

  • Hays, R. L. 2005. Groundwater discharge and associated nutrient fluxes to the Delaware Bay at Cape Henlopen, Delaware. M.S. Thesis, University of Delaware, Lewes, Delaware.

    Google Scholar 

  • Hays, R. L. andW. J. Ullman. 2007. Direct determination of total and fresh groundwater discharge and nutrient loads from a sandy beachface at low tide (Cape Henlopen, Delaware, U.S.A.).Limnology and Oceanography 52:240–247.

    Article  CAS  Google Scholar 

  • Herbert, R. A. 1999. Nitrogen cycling in coastal marine ecosystems.FEMS Microbiology Reviews 23:563–590.

    Article  CAS  Google Scholar 

  • Herbert, R. A. andD. B. Nedwell. 1990. Role of environmental factors in regulating nitrate respiration in intertidal sediments, p. 77–90.In N. P. Revsbech and J. Sørensen (eds.), Denitrification in Soil and Sediment, FEMS Symposium Series 56. Plenum, New York.

    Google Scholar 

  • Huettel, M. andA. Rusch. 2000. Transport and degradation of phytoplankton in permeable sediment.Limnology and Oceanography 45:534–549.

    CAS  Google Scholar 

  • Johannes, R. E. 1980. The ecological significance of the submarine discharge of groundwater.Marine Ecology Progress Series 3:365–373.

    Article  Google Scholar 

  • Johannes, R. E. andC. J. Hearn. 1985. The effect of submarine groundwater discharge on nutrient and salinity regimes in a coastal lagoon off Perth, Western Australia.Estuarine, Coastal, and Shelf Science 21:789–800.

    Article  CAS  Google Scholar 

  • Karrh, R. R. andD. C. Miller. 1996. Effect of flow and sediment transport on feeding rate of a surface-deposit feeder,Saccoglossus kowalevskii.Marine Ecology Progress Series 130:125–134.

    Article  Google Scholar 

  • Kashef, A.-A. I. 1983. Harmonizing Ghyben-Herzberg interface with rigorous solutions.Ground Water 21:153–159.

    Article  Google Scholar 

  • Kawabe, M., J. H. Sharp, K.-C. Wong, and M. E. Lebo. 1988. Oceanographic Data Report Number 8. Density profiles from the Delaware Estuary, October 1986–September 1988. University of Delaware, Delaware Sea Grant College Program Report DEL-SG-07-90. Newark, Delaware.

  • Kirchman, D. L. 2000. Uptake and regeneration of inorganic nutrients by marine heterotrophic bacteria, p. 261–288. In D. L. Kirchman (ed.), Microbial Ecology of the Oceans. Wiley, New York.

    Google Scholar 

  • Krom, M. D. andR. A. Berner. 1980. Adsorption of phosphate in anoxic marine sediments.Limnology and Oceanography 25:797–806.

    CAS  Google Scholar 

  • Laverman, A. M., P. Van Capellen, D. van Rotterdam-Los, C. Pallud, andJ. Abell. 2006. Potential rates and pathways of nitrate reduction in coastal sediments.FEMS Microbial Ecology 58:179–192.

    Article  CAS  Google Scholar 

  • Li, L., D. A. Barry, F. Stagnitti, andJ.-Y. Parlange. 1999. Submarine groundwater discharge and associated chemical input to a coastal sea.Water Resources Research 35:3253–3259.

    Article  CAS  Google Scholar 

  • Maurmeyer, E. M. 1974. Analysis of shortand long-term elements of coastal change in a simple spit system: Cape Henlopen, Delaware. M.S. Thesis, University of Delaware, Newark, Delaware.

    Google Scholar 

  • Meyer, S. 1975. Data Analysis for Scientists and Engineers, 1st edition. Wiley, New York.

    Google Scholar 

  • Michalopoulos, P. andR. C. Aller. 2004. Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay formation, and storage.Geochimica et Cosmochimica Acta 68:1061–1085.

    Article  CAS  Google Scholar 

  • Miller, D. C., M. J. Bock, andE. J. Turner. 1992. Deposit and suspension feeding in oscillatory flow and sediment fluxes.Journal of Marine Research 50:489–520.

    Article  Google Scholar 

  • Miller, D. C. andW. J. Ullman. 2004. Ecological consequences of groundwater discharge to Delaware Bay, United States.Ground Water 42:959–970.

    Article  Google Scholar 

  • Moore, W. S. 1999. The subterranean estuary: A reaction zone of groundwater and seawater.Marine Chemistry 65:111–125.

    Article  CAS  Google Scholar 

  • Portnoy, J. W., B. L. Nowicki, C. T. Roman, andD. W. Urish. 1998. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary.Water Resources Research 34:3095–3104.

    Article  CAS  Google Scholar 

  • Ray, A. J. 1989. Influence of sediment dynamics and deposit feeding on benthic microalgae. M.S. Thesis, University of Delaware, Lewes, Delaware.

    Google Scholar 

  • Reay, W. G., D. L. Gallagher, andG. M. Simmons. 1992. Ground water discharge and its impact on surface water quality in a Chesapeake Bay inlet.Water Research Bulletin 28:1121–1134.

    Google Scholar 

  • Rosenfeld, J. K. 1979. Ammonium adsorption in nearshore anoxic sediments.Limnology and Oceanography 24:356–364.

    CAS  Google Scholar 

  • Rusch, A. andM. Huettel. 2000. Advective particle transport into permeable sediments—evidence from experiments in an intertidal sandflat.Limnology and Oceanography 45:525–533.

    Article  CAS  Google Scholar 

  • Rysgaard, S., P. Thastum, T. Dalsgaard, P. B. Christensen, andN. P. Sloth. 1999. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments.Estuaries 22:21–30.

    Article  CAS  Google Scholar 

  • Santoro, A. E., A. B. Boehm, andC. A. Francis. 2006. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer.Applied and Environmental Microbiology 72:2102–2109.

    Article  CAS  Google Scholar 

  • Seitzinger, S. P. 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance.Limnology and Oceanography 33:702–724.

    Article  CAS  Google Scholar 

  • Sharp, J. H. 1988. Trends in nutrient concentrations in the Delaware Estuary, p. 78–92.In S. K. Majumdar, E. W. Miller, and L. E. Sage (eds.), Ecology and Restoration of the Delaware River Basin. The Pennsylvania Academy of Science, Pennsylvania, Philadelphia.

    Google Scholar 

  • Sharp, J. H., C. H. Culberson, andT. M. Church. 1982. The chemistry of the Delaware Estuary: General considerations.Limnology and Oceanography 27:1015–1028.

    CAS  Google Scholar 

  • Sharp, J. H., J. R. Pennock, T. M. Church, J. M. Tramontano, andL. A. Cifuentes. 1984. The estuarine interaction of nutrients, organics, and metals: A case study in the Delaware Estuary, p. 241–257.In V. S. Kennedy (ed.), The Estuary as a Filter. Academic Press, New York.

    Google Scholar 

  • Shaw, T. J. 2003. Biogeochemical processes in coastal aquifers and permeable sediments.Aquatic Geochemistry 9:165–169.

    Article  CAS  Google Scholar 

  • Slomp, C. P. andP. Van Cappellen. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: Controls and potential impact.Journal of Hydrology 295: 64–86.

    Article  CAS  Google Scholar 

  • Solorzano, L. andJ. H. Sharp. 1980a. Determination of total dissolved phosphorus and particulate phosphorus in natural waters.Limnology and Oceanography 25:754–758.

    CAS  Google Scholar 

  • Solorzano, L. andJ. H. Sharp. 1980b. Determination of total dissolved nitrogen and particulate nitrogen in natural waters.Limnology and Oceanography 25:751–754.

    CAS  Google Scholar 

  • Strickland, J. D. H. andT. R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd edition. Fisheries Research Board of Canada, Ottawa, Canada.

    Google Scholar 

  • Stumm, W. andJ. J. Morgan. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edition. Wiley, New York.

    Google Scholar 

  • Suzumura, M., S. Ueda, andE. Sumi. 2000. Control of phosphate concentration through adsorption and desorption processes in groundwater and seawater mixing at sandy beaches in Tokyo Bay, Japan.Journal of Oceanography 56:667–673.

    Article  CAS  Google Scholar 

  • Talbot, J. M., K. D. Kroeger, A. Rago, M. C. Allen, andM. A. Charette. 2003. Nitrogen flux and speciation through the subterranean estuary of Waquoit Bay, Massachusetts.Biological Bulletin 205:244–245.

    Article  CAS  Google Scholar 

  • Testa, J. M., M. A. Charette, E. R. Sholkovitz, M. C. Allen, A. Rago, andC. W. Herbold. 2002. Dissolved iron cycling in the subterranean estuary of a coastal bay: Waquoit Bay, Massachusetts.Biological Bulletin 203:255–256.

    Article  Google Scholar 

  • Trefry, M. G., T. J. A. Svensson, andG. B. Davis. 2007. Hypoaigic influences on groundwater flux to a seasonally saline river.Journal of Hydrology 335:330–353.

    Article  Google Scholar 

  • Uchiyama, Y., K. Nadaoka, P. Rölke, K. Adachi, andH. Yagi. 2000. Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach.Water Resources Research 36: 1467–1479.

    Article  CAS  Google Scholar 

  • Ueda, S., C.-S. U. Go, M. Suzumura, andE. Sumi. 2003. Denitrification in a seashore sandy deposit influenced by groundwater discharge.Biogeochemistry 63:187–205.

    Article  CAS  Google Scholar 

  • Ullman, W. J., B. Chang, D. C. Miller, andJ. A. Madsen. 2003. Groundwater mixing, nutrient diagenesis and discharges across a sandy beachface, Cape Henlopen, Delaware (U.S.A.).Estuarine, Coastal, and Shelf Science 57:539–552.

    Article  CAS  Google Scholar 

  • Valiela, I., K. Forman, M. Lamontagne, D. Hersh, J. Costa, P. Peckol, B. Demeo-Anderson, C. D’Avanzo, M. Babione, C.-H. Sham, J. Brawley, andK. Lajtha. 1992. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts.Estuaries 15:443–457.

    Article  CAS  Google Scholar 

  • Vempati, R. K. andR. H. Loeppert. 1989. Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite.Clays and Clay Minerals 37:273–279.

    Article  CAS  Google Scholar 

  • Volk, J. A., K. B. Savidge, J. R. Scudlark, A. S. Andres, andW. J. Ullman. 2006. Nitrogen loads through baseflow, stormflow, and underflow form the watershed to Rehoboth Bay, Delaware.Journal of Environmental Quality 35:1742–1755.

    Article  CAS  Google Scholar 

  • Wehmiller, J. F., H. A. Stecher, III, L. L. York, and I. Friedman. 2000. The thermal environment of fossils: Effective ground temperatures (1994–1999) at aminostratigraphic sites, U.S. Atlantic coastal plain, p. 219–250.In G. A. Goodfriend, M. J. Collins, M. L. Fogel, S. A. Macko, and J. F. Wehmiller (eds.), Perspectives in Amino Acid and Protein Geochemistry. Oxford, New York.

  • Zektser, I. S. andH. A. Loaiciga. 1993. Groundwater fluxes in the global hydrologic cycle: Past, present and future.Journal of Hydrology 144:405–427.

    Article  Google Scholar 

  • Zipperle, A. andK. Reise. 2005. Freshwater springs on intertidal sand flats cause a switch in dominance among polychaete worms.Journal of Sea Research 54:143–150.

    Article  Google Scholar 

Sources of Unpublished Materials

  • Coastal Planning and Engineering Inc. (CPE). 2005. unpublished data. Littoral Transport Evaluation at the Lewes Ferry Terminal and Adjacent Areas. Report prepared for Delaware Department of Natural Resources and Environmental Control and Delaware River and Bay Authority, Coastal Planning and Engineering Inc., Boca Raton, Florida. Report Obtained from Anthony Pratt, Division of Soil and Water Conservation, Department of Natural Resources and Environmental Control, 89 Kings Highway, Dover, Delaware 19901.

  • Sadler, M. personal communication. Division of Soil and Water Conservation, Department of Natural Resources and Environmental Control, 89 Kings Highway, Dover, Delaware 19901.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca L. Hays.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12237-008-9043-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hays, R.L., Ullman, W.J. Dissolved nutrient fluxes through a sandy estuarine beachface (Cape Henlopen, Delaware, U.S.A.): Contributions from fresh groundwater discharge, seawater recycling, and diagenesis. Estuaries and Coasts: J ERF 30, 710–724 (2007). https://doi.org/10.1007/BF02841967

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02841967

Keywords

Navigation