Skip to main content
Log in

A model study on the decay of volcanic aerosol layer and verification with Pinatubo and El Chichon data

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The time evolution of stratospheric aerosol layer formed after a volcanic eruption is studied taking into account the aerosol microphysical processes of growth, coagulation and sedimentation. Using a simple model we could explain the observed evolution of the Pinatubo volcanic layer which decayed in about 3 years. The experimental data obtained by Nd:YAG backscatter lidar over Ahmedabad further supports this finding. The data obtained after the El Chichon volcanic eruption also showed that the El Chichon aerosol layer decayed in about 3 years time. Thus, though the amount of SO2 injected has been higher, in the case of Pinatubo, about two to three times more than El Chichon, it has resulted in the production of larger aerosol particles due to faster growth and coagulation processes, and subsequently a faster removal rate, to give more or less a similar background aerosol amount at the stratosphere in about 3 years time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bekki S and Pyle J A 1994 Two-dimensional modeling study of the volcanic eruption of Mount Pinatubo;J. Geophys. Res. 99 18, 861–18, 869

    Google Scholar 

  • Bluth G J S, Doiron S D, Krueger A J, Walter L S and Schnetzler C C 1992 Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions;Geophys. Res. Lett. 19 151–154

    Article  Google Scholar 

  • D’Altorio A, Masci F, Rizi V, Visconti G and Verdecchia M 1993 Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. Part II: Time evolution of ozone profiles and of aerosol properties;Geophys. Res. Lett. 20 2869–2872

    Article  Google Scholar 

  • DeFoor T, Robinson E and Ryan S 1992 Early lidar observations of the June 1991 Pinatubo eruption plume at Mauna Loa observatory, Hawaii;Geophys. Res. Lett. 19 187–190

    Article  Google Scholar 

  • Deshler T, Johnson B J and Rozier W R 1993 Balloon-borne measurements of Pinatubo aerosol during 1991 and 1992 at 41°N: Vertical profiles, size distribution, and volatility;Geophys. Res. Lett. 20 1435–1438

    Article  Google Scholar 

  • Deshler T, Hofmann D J, Johnson B J and Rozier W R 1992 Balloon-borne measurements of the Pinatubo aerosol size distribution and volatility at Laramie, Wyoming during the summer of 1991;Geophys. Res. Lett. 19 199–202

    Article  Google Scholar 

  • Fuchs N A 1964The Mechanics of Aerosols (New York, USA: Pergamon press) 408 pp

    Google Scholar 

  • Hamill P, Kiang C S and Cadle R D 1977a The nucleation of H2SO4-H2O solution aerosol particles in the atmosphere;J. Atmos. Sci. 34 150–162

    Article  Google Scholar 

  • Hamill P, Toon O B and Kiang C S 1977b Microphysical processes affecting stratospheric aerosol particles;J. Atmos. Sci. 34 1104–1119

    Article  Google Scholar 

  • Hofmann D J 1988 Aerosols from past and present volcanic emissions, inAerosols and Climate (ed) P V Hobbs and M P McCormick (Virginia, USA: A Deepak Publishing) pp 195–214.

    Google Scholar 

  • Hofmann D J 1987 Perturbations to the global atmosphere associated with the El Chichon volcanic eruption of 1982;Rev. Geophys. 25 743–759

    Article  Google Scholar 

  • Hofmann D J and Rosen J M 1984 On the temporal variation of stratospheric aerosol size and mass during the first 18 months following the 1982 eruptions of El Chichon;J. Geophys. Res. 89 4883–4890

    Article  Google Scholar 

  • Hofmann D J and Rosen J M 1983 Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon;Geophys. Res. Lett. 10 313–316

    Article  Google Scholar 

  • Jäger H 1992 The Pinatubo eruption cloud observed by lidar at Garmisch-Partenkirchen;Geophys. Res. Lett. 19 191–194

    Article  Google Scholar 

  • Jäger H and Hofmann D J 1991 Midlatitude lidar backscatter to mass, area, and extinction conversion model based onin situ aerosol measurements from 1980 to 1987;Appl. Opt. 30 127–138

    Article  Google Scholar 

  • Jäger H, Littfass M, Hofmann D J and Rosen J M 1988 Stratospheric extinction and mass variations after a major volcanic eruption, derived from lidar measurements at northern midlatitudes, inAerosols and Climate (ed) P V Hobbs and M P McCormick (Virginia, USA: A Deepak Publishing) pp. 215–222

    Google Scholar 

  • Jayaraman A, Acharya Y B, Subbaraya B H and Chandra H 1995a Nd:YAG backscatter lidar at Ahmedabad (23°N, 72.5°E) for tropical middle atmospheric studies;Appl. Opt. 34 6937–6940

    Article  Google Scholar 

  • Jayaraman A, Ramachandran S, Acharya Y B and Subbaraya B H 1995b Pinatubo volcanic aerosol layer decay observed at Ahmedabad (23°N), India, using neodymium: yttrium/ aluminium/garnet backscatter lidar;J. Geophys. Res. 100 23, 209–23, 214

    Google Scholar 

  • Jayaraman A 1991 Results on aerosol measurements from balloons;Indian J. Radio Space Phys. 20 290–294

    Google Scholar 

  • Kasten F 1968 The falling speed of aerosol particles;J. Appl. Meteorol. 7 944–947

    Article  Google Scholar 

  • Klett J D 1985 Lidar inversion with variable backscatter/ extinction ratios;Appl. Opt. 24 1638–1643

    Article  Google Scholar 

  • McCormick M P and Veiga R E 1992 SAGE II measurements of early Pinatubo aerosols;Geophys. Res. Lett. 19 155–158

    Article  Google Scholar 

  • McPeters R D 1993 The atmospheric SO2 budget for Pinatubo derived from NOAA-11 SBUV/2 spectral data;Geophys. Res. Lett. 20 1971–1974

    Article  Google Scholar 

  • Minnis P, Harrison E F, Stowe L L, Gibson G G, Denn F M, Doeling D R and Smith Jr. W L 1993 Radiative climate forcing by the Mount Pinatubo eruption;Science 259 1411–1415

    Article  Google Scholar 

  • Pinto J P, Turco R P and Toon O B 1989 Self-limiting physical and chemical effects in volcanic eruption clouds;J. Geophys. Res. 94 11, 165–11, 174

    Google Scholar 

  • Ramachandran S, Jayaraman A, Acharya Y B and Subbaraya B H 1994a Balloon-borne photometric studies of the stratospheric aerosol layer after Mt. Pinatubo eruption;J. Geophys. Res. 99 16, 771–16, 777

    Google Scholar 

  • Ramachandran S, Jayaraman A, Acharya Y B and Subbaraya B H 1994b Mode radius and asymmetry factor of Mt. Pinatubo volcanic aerosols from balloon-borne optical measurements over Hyderabad during October 1991;Geophys. Res. Lett. 21 2011–2014

    Article  Google Scholar 

  • Read W G, Froidevaux L and Waters J W 1993 Microwave Limb Sounder measurements of stratospheric SO2 from the Mt. Pinatubo volcano;Geophys. Res. Lett. 20 1299–1302

    Article  Google Scholar 

  • Robinson E and DeFoor T 1988 Stratospheric aerosol conditions over Mauna Loa during recent quiescent volcanic periods, inAerosols and Climate (ed) P V Hobbs and M P McCormick (Virginia, USA: A Deepak publishing) pp. 325–334

    Google Scholar 

  • Rosen J M, Kjome N T, McKenzie R L and Liley J B 1994 Decay of Mount Pinatubo aerosol at midlatitudes in the northern and southern hemispheres;J. Geophys. Res. 99 25, 733–25, 739

    Google Scholar 

  • Sheridan P J, Schnell R C and Hofmann D J 1992 Electron microscope studies of Mt. Pinatubo aerosol layers over Laramie, Wyoming during summer 1991;Geophys. Res. Lett. 19 203–206

    Article  Google Scholar 

  • Stowe L L, Carey R M and Pellegrino P P 1992 Monitoring of the Pinatubo aerosol layer with NOAA/11 AVHRR data;Geophys. Res. Lett. 19 159–162

    Article  Google Scholar 

  • Trepte C R, Veiga R E and McCormick M P 1993 The poleward dispersal of Mount Pinatubo volcanic aerosol;J. Geophys. Res. 98 18, 563–18, 573

    Google Scholar 

  • Turco R P, Whitten R C and Toon O B 1982 Stratospheric aerosols: Observations and theory;Rev. Geophys. Space Phys. 20 233–279

    Article  Google Scholar 

  • Turco R P, Hamill P, Toon O B, Whitten R C and Kiang C S 1979a A one-dimensional model describing aerosol formation and evolution in the stratosphere: I. Physical processes and mathematical analogs;J. Atmos. Sci. 36 699–717

    Article  Google Scholar 

  • Turco R P, Hamill P, Toon O B, Whitten R C and Kiang C S 1979b A one-dimensional model describing aerosol formation and evolution in the Stratosphere: I. Physical processes and computational analogs;NASA Technical paper, 1362, 94 pp

  • Winker D M and Osborn M T 1992 Airborne lidar observations of the Pinatubo volcanic plume;Geophys. Res. Lett. 19 167–170

    Article  Google Scholar 

  • Zhao J-X, Turco R P and Toon O B 1995 A model simulation of Pinatubo volcanic aerosols in the stratosphere;J. Geophys. Res. 100 7315–7328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, S., Jayaraman, A. & Sitaram, B.R. A model study on the decay of volcanic aerosol layer and verification with Pinatubo and El Chichon data. Proc. Indian Acad. Sci. (Earth Planet Sci.) 106, 157–167 (1997). https://doi.org/10.1007/BF02839287

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02839287

Keywords

Navigation