Skip to main content
Log in

Kinetic properties of fractions of extracellular NAD+ nucleosidase fromStreptococcus pyogenes as an example of host selection by a pathogen: Possible role of serum albumin in the organism

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Preparative isoelectric focusing was used to separate free bacterial NAD+ nucleosidase from its complex with a bound host component. Both fractions were characterized by optimum temperature and activation energy of denaturation. The bacterial product is enzymically inactive. The enzymically active structure is formed upon binding to the host component. Only the host organism can provide the suitable, activating structure. The host component in the present system is added to the cultivation medium with a beef heart extract but it can be replaced by serum albumin. The possible role of albumin as a carrier structure for flexible and enzymically inactive peptides is discussed. Different peptides bound to albumin can provide different enzyme activities. The term binary enzyme is coined, referring to a situation where the two enzyme components are coded at genetically distant loci. The pathogen makes use of the carrier structure of albumin type and produces another polypeptide invested with an enzyme activity convenient for the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anai M., Haraguchi H., Takagi Y.: An endonuclease associated with bovine plasma albumin fraction. I. Purification and some properties of the enzyme.J. Biol. Chem. 247, 193–198 (1972).

    PubMed  CAS  Google Scholar 

  • Carlson A.S., Kellner A., Bernheimer A.W., Freeman E.B.: A streptococcal enzyme that acts specifically upon diphosphopyridine nucleotide: characterization of the enzyme and its separation from streptolysin O.J. Exp. Med. 106, 15–26 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Casida J.E., Augustinsson K.-B.: Reaction of plasma albumin with 1-naphthylN-methylcarbamate and certain other esters.Biochim. Biophys. Acta 36, 411–426 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Commoner B.: The biochemical basis of tobacco mosaic virus infectivity, pp. 17–30 in B.E. Frisch-Niggermeyer (Ed.):Proc. 4th Internat. Congr. Biochem. Vienna 1958. Symp. VII, Biochemistry of Viruses. Pergamon Press, London 1959.

    Google Scholar 

  • Crawford I.P., Yanofsky C.: The formation of a new enzymatically active protein as a result of suppression.Proc. Nat. Acad. Sci. USA 45, 1280–1287 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Day P.R.: Genetics of recognition systems in host-parasite interactions, pp. 134–147 inEncyclopedia of Plant Physiology, New Series, Vol. 17. Springer-Verlag, Berlin 1984.

    Google Scholar 

  • Dayhoff M.O.:Atlas of Protein Sequence and Structure 1972, Vol. 5. National Biomedical Research Foundation—Georgetown University Medical Center, Washington (DC) 1972.

    Google Scholar 

  • Ellingboe A.H.: Changing concepts in host-pathogen genetics.Ann. Rev. Phytopathol. 19, 125–143 (1981).

    Article  CAS  Google Scholar 

  • Elsbach P., Pettis P.: Phospholipase activity associated with serum albumin.Biochim. Biophys. Acta 296, 89–93 (1973).

    PubMed  CAS  Google Scholar 

  • Fantl P.: Evolutionary trends in plasma mercaptalbumin composition.Comp. Biochem. Physiol. 42B, 403–408 (1972).

    Google Scholar 

  • Fehrenbach F.J.: Gel-filtration behavior and molecular weight of NAD-glycohydrolase (EC 3.2.2.5) from streptococci in column chromatography on Sephadex gels.J. Chromatogr. 41, 43–52 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Flor H.H.: Current status of the gene-for-gene concept.Ann. Rev. Phytopathol. 9, 275–296 (1971).

    Article  Google Scholar 

  • Garen A.: Sense and nonsense in the genetic code.Science 160, 149–159 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Garen A., Siddiqi O.: Suppression of mutations in the alkaline phosphatase structural cistron ofE. coli.Proc. Nat. Acad. Sci. USA 48, 1121–1127 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Gooder H.: Antistreptolysin-O: its interaction with streptolysin O, its titration and a comparison of some standard preparations.Bull. WHO 25, 173–183 (1961).

    PubMed  CAS  Google Scholar 

  • Grlach D., Ozegowski J.H., Gunther E., Vettermann S., Kohler W.: Purification and some properties of streptococcal NAD-glycohydrolase.FEMS Microbiol. Lett. 136, 71–78 (1996).

    Article  Google Scholar 

  • Holland J.J.: Enterovirus entrance into specific host cells, subsequent alterations of cell protein and nucleic acid synthesis.Bacteriol. Rev. 28, 3–13 (1964).

    CAS  Google Scholar 

  • Hooker A.H., Saxena K.M.S.: Genetics of disease resistance in plants.Ann. Rev. Genet. 5, 407–424 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Judah J.D., Gamble M., Steadman J.H.: Biosynthesis of serum albumin in rat liver. Evidence for the existence of proalbumin.Biochem. J. 134, 1083–1091 (1973).

    PubMed  CAS  Google Scholar 

  • Kameshita I., Matsuda Z., Taniguchi T., Shizuta Y.: Poly(ADP-ribose) synthetase.J. Biol. Chem. 259, 4770–4776 (1984).

    PubMed  CAS  Google Scholar 

  • Karush F.: Heterogeneity of the binding sites of bovine serum albumin.J. Am. Chem. Soc. 72, 2705–2718 (1950).

    Article  CAS  Google Scholar 

  • Kauzmann W., Simpson R.B.: The kinetics of protein denaturation. III. The optical rotations of serum albumin, β-lactoglobulin and pepsin in urea solutions.J. Am. Chem. Soc. 75, 5154–5157 (1953).

    Article  CAS  Google Scholar 

  • Knight C.A.: Purification of viruses: criteria of purity, pp. 25–29 inChemistry of Viruses, 2nd ed. Springer-Verlag, Wien-New York 1975.

    Google Scholar 

  • Lauffer M.A., Stevens C.L.: Structure of the tobacco mosaic virus particle; polymerization of tobacco mosaic virus protein.Adv. Virus Res. 13, 1–63 (1968).

    PubMed  CAS  Google Scholar 

  • Lazarides P.D., Bernheimer A.W.: Association of production of diphosphopyridine nucleotidase with serological type of group AStreptococcus.J. Bacteriol. 74, 412–413 (1957).

    PubMed  CAS  Google Scholar 

  • Liu T.-Y., Neumann N.P., Elliott S.D., Moore S., Stein W.H.: Chemical properties of streptococcal proteinase and its zymogen.J. Biol. Chem. 238, 251–256 (1963).

    PubMed  CAS  Google Scholar 

  • Morgan F.J., Henschen A.: The structure of streptokinase I. Cyanogen bromide fragmentation, amino acid composition and partial amino acid sequences.Biochim. Biophys. Acta 181, 93–104 (1969).

    PubMed  CAS  Google Scholar 

  • Munk K., Schäfer W.: Eigenschaften tierischer Virusarten untersucht an den Geflügelpestviren als Modell—II. Mitteilung: Serologische Untersuchungen über die Geflügelpestviren und über ihre Beziehungen zu einem normalen Wirtsprotein.Z. Naturforsch. 6b, 372–379 (1951).

    CAS  Google Scholar 

  • Nishizuka Y., Ueda K., Nakazawa K., Hayaishi O.: Studies on the polymer of adenosine diphosphate ribose—I. Enzymic formation from nicotinamide adenine dinucleotide in mammalian nuclei.J. Biol. Chem. 242, 3164–3171 (1967).

    PubMed  CAS  Google Scholar 

  • Pentz E.I., Kot E., Ferretti J.J.: Some characteristics of streptococcal nicotinamide adenine dinucleotidase and streptolysin O.J. Bacteriol. 88, 497–508 (1964).

    PubMed  CAS  Google Scholar 

  • Peters T. Jr.: Serum albumin, pp. 133–181 in F.W. Putnam (Ed.):The Plasma Proteins. Structure, Function and Genetic Control, Vol. 1. Academic Press, New York-San Francisco-London 1975.

    Google Scholar 

  • Sigimura T., Miwa M.: Poly(ADP-ribose) and cancer research.Carcinogenesis 4, 1503–1506 (1983).

    Article  Google Scholar 

  • Stuart-Harris C.H., Schild G.C.: The molecular virology and replication of influenza viruses: morphology and chemical composition, pp. 23–27 inInfluenza. The Viruses and the Disease. Edward Arnold, London 1976.

    Google Scholar 

  • Talal N., Hermann G., de Vaux S., Cyr C., Grabar P.: Immunoelectrophoretic study of mouse serum and urinary esterases. Chromatographic separation of albumin esterase.J. Immunol. 90, 246–256 (1963).

    PubMed  CAS  Google Scholar 

  • Tove S.B.: The esterolytic activity of serum albumin.Biochim. Biophys. Acta 57, 230–000 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Ueda K., Hayaishi O.: ADP-ribosylation.Ann. Rev. Biochem. 54, 73–100 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Williams G.T., Johnstone A.P.: ADP-ribosyl transferase, rearrangement of DNA, and cell differentiation.Biosci. Rep. 3, 815–830 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Wilson W.D., Foster J.F.: Conformation-dependent limited proteolysis of bovine plasma albumin by an enzyme present in commerical albumin preparations.Biochemistry 10, 1772–1780 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Zahradník F.J.: Streptococcal extracellular NAD-glycohydrolase. Optimal temperature and activation by cysteine.Folia Microbiol. 22, 92–97 (1977).

    Google Scholar 

  • Zahradník F.J.: Streptococcal extracellular NAD+ nucleosidase. Characterization of changes occurring during purification.Folia Microbiol. 25, 40–49 (1980).

    Article  Google Scholar 

  • Žižkovský V., Štrop P., Lukešová Š., Korčáková J., Dvořák P.: Similarity of hydrophobic properties of α-fetoprotein and albumin.Oncodevelop. Biol. Med. 2, 323–330 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahradník, F.J. Kinetic properties of fractions of extracellular NAD+ nucleosidase fromStreptococcus pyogenes as an example of host selection by a pathogen: Possible role of serum albumin in the organism. Folia Microbiol 46, 3–10 (2001). https://doi.org/10.1007/BF02825875

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02825875

Keywords

Navigation