Skip to main content
Log in

Gene transfer by electroporation

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Electroporation of cells in the presence of DNA is widely used for the introduction of transgenes either stably or transiently into bacterial, fungal, animal, and plant cells. A review of the literature shows that electroporation parameters are often reported in an incomplete or incorrect manner, forcing researchers to rely too much on a purely empirical trial and error approach. The goal of this article is to provide the reader with an understanding of electrical circuits used in electroporation experiments as well as physical and biological aspects of the electroporation process itself. Further, a simple paradigm is provided which unites all electroporation parameters. This article should be particularly useful to those new to the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields.EMBO J. 1, 841–845.

    PubMed  CAS  Google Scholar 

  2. Fromm, M., Taylor, L. P., and Walbot, V. (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation.Proc. Natl. Acad. Sci. USA 82, 5824–5828.

    Article  PubMed  CAS  Google Scholar 

  3. Chassy, B. M. and Flickinger, J. L. (1987) Transformation ofLactobacillus casei by electroporation.FEMS Microbiol. Lett. 44, 173–177.

    Article  CAS  Google Scholar 

  4. Zimmermann, U., Scheurich, P., Pilwat, G., and Benz R. (1981) Cells with manipulated functions: new perpectives for cell biology, medicine and technology.Angew. Chem. Int. Ed. Engl. 20, 325–344.

    Article  Google Scholar 

  5. Coster, H. G. L., Steudle, E., and Zimmermann, U. (1977) Turgor pressure sensing in plant cell membranes.Plant Physiol. 58, 636–643.

    Google Scholar 

  6. Weaver, J. C. (1995) Electroporation theory: concepts and mechanisms, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 1–26.

    Chapter  Google Scholar 

  7. Shikegawa, K. and Dower, W. J. (1988) Electroporation of prokaryotes and eukaryotes: a general approach to the introduction of macromolecules into cells.BioTechniques 6, 742–751.

    Google Scholar 

  8. McLaughlin, R. E. and Ferretti, J. J. (1995) Electrotransformation ofStreptococci, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms, (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 185–193.

    Chapter  Google Scholar 

  9. Grey, M. and Brendel, M. (1995) Ten-minute electro-transformation ofSaccharomyces cerevisiae, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 269–272.

    Chapter  Google Scholar 

  10. Stowers, L., Gautsch, J., Dana, R., and Hoekstra, M. F. (1995) Yeast transformation and the preparation of frozen spheroplasts for electroporation, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 261–267.

    Chapter  Google Scholar 

  11. Hood, M. T. and Stachow, C. S. (1995) Electroporation ofShizosaccharomyces pombe, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 273–278.

    Chapter  Google Scholar 

  12. Becher, D., and Oliver, S. G. (1995) Transformation ofCandida maltosa by electroporation, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 291–302.

    Chapter  Google Scholar 

  13. Kapoor, M. (1995) Gene transfer by electroporation of filamentous fungi, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 279–289.

    Chapter  Google Scholar 

  14. Knecht, D. and Pang, K. M. (1995) Electroporation ofDictyostelium discoideum, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 321–330.

    Chapter  Google Scholar 

  15. Burland, T. G. and Bailey, J. (1995) Electroporation ofPhysarum polycephalum, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 303–320.

    Chapter  Google Scholar 

  16. Gaertig, J. and Gorovsky, M. A. (1995) Gene transfer by electroporation ofTetrahymena, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 331–348.

    Chapter  Google Scholar 

  17. Brown, L. E., Sprecher, S. L. and Keller, L. R. (1991) Introduction of exogenous DNA intoChlamydomonas reinhardtii by electroporation.Mol. and Cell. Biol. 11, 2328–2332.

    CAS  Google Scholar 

  18. Shillito, R. D., Saul, M. W., Paszkowski, J., Müller, M., and Potrykus, I. (1985) High efficiency direct gene transfer to plants.Bio/Technology 3, 1099–1103.

    Article  Google Scholar 

  19. Riggs, C.D. and Bates, G. W. (1986) Stable transformation of tobacco by electroporation: Evidence for plasmid concatenation.Proc. Natl. Acad. Sci. USA 83, 5602–5606.

    Article  PubMed  CAS  Google Scholar 

  20. Taylor, B. H. and Larkin, P. J. (1988) Analysis of electroporation efficiency in plant protoplasts.Austral. J. Biotech. 1, 52–57.

    CAS  Google Scholar 

  21. Hauptmann, R. M., Ozias-Akins, P., Vail, V., Tabaeizadeh, Z., Rogers, S. G., Horsch, R. B., Vasil, I. K., and Fraley, R. T. (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species.Plant Cell Rep. 6, 265–270.

    Article  CAS  Google Scholar 

  22. Karube, I., Tamiya, E. and Matsuoka, H. (1985) Transformation ofSaccharomyces cerevisiae spheroplasts by high electric pulse.FEBS Lett. 182, 90–94.

    Article  CAS  Google Scholar 

  23. Christou, P., Murphy, J. E. and Swain, W. F. (1987) Stable transformation of soybean by electroporation and root formation from transformed callus.Proc. Natl. Acad. Sci. USA 84, 3962–3966.

    Article  PubMed  CAS  Google Scholar 

  24. Guerche, P., Bellini, C., Le Moullec, J.-M. and Caboche, M. (1987) Use of a transient expression assay of direct gene transfer into tobacco mesophyll protoplasts by electroporation.Biochimie 69, 621–628.

    Article  PubMed  CAS  Google Scholar 

  25. Okada, K., Nagata, T. and Takebe, I. (1986) Introduction of functional RNA into plant protoplasts by electroporation.Plant Cell Physiol. 27, 619–626.

    CAS  Google Scholar 

  26. D’Halluin, K., Bonne, E., Bossut, M., De Beuckeleer, M., and Leemans, J. (1992) Transgenic maize plants by tissue electroporation.Plant Cell 4, 1495–1505.

    Article  PubMed  CAS  Google Scholar 

  27. Dekeyser, R. A., Claes, B., De Rycke, R. M. U., Habets, M. E., Van Montagu, M. and Caplan, A. B. (1990) Transient gene expression in intact and organized rice tissues.Plant Cell 2, 591–602.

    Article  PubMed  CAS  Google Scholar 

  28. Arencibia, A., Molina, P. R., de la Riva, G., and Selman-Housein, G. (1995) Production of transgenic surgarcane (Saccharum officinarum L.) plants by intact cell electroporation.Plant Cell Rep. 14, 305–309.

    Article  CAS  Google Scholar 

  29. Akella, V. and Lurquin, P. F. (1993) Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos.Plant Cell Rep. 12, 110–117.

    Article  CAS  Google Scholar 

  30. Songstad, D. D., Halaka, F. G., DeBoer, D. L., Armstrong, C. L., Hinchee, M. A. W., Ford-Santino, C. G., Brown, S. M., Fromm, M. E., and Horsch, R. B. (1993) Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation.Plant Cell Tissue Organ Culture 33, 195–201.

    Article  CAS  Google Scholar 

  31. Klöti, A., Iglesias, V. A., Wünn, J., Burkhardt, P. K., Datta, S. K. and Potrykus, I. (1993) Gene transfer by electroporation into intact scutellum cells of wheat embryos.Plant Cell Rep. 12, 671–675.

    Article  Google Scholar 

  32. Dillen, W., Engler, G., Van Montagu, M. and Angenon, G. (1995) Electroporation-mediated DNA delivery to seedling tissues ofPhaseolus vulgaris L. (common bean).Plant Cell Rep. 15, 119–124.

    Article  CAS  Google Scholar 

  33. Chaudury, A., Maheshwari, S. C. and Tyagi, A. K. (1995) transient expression ofgus gene in intact seed embryos ofIndica rice after electroporation-mediated gene delivery.Plant Cell Rep. 14, 215–220.

    Google Scholar 

  34. Chowrira, G. M., Akella, V. and Lurquin, P. F. (1995) Electroporation-mediated gene transfer into intact nodal meristems in planta.Mol. Biotech. 3, 17–23.

    Article  CAS  Google Scholar 

  35. Chowrira, G. M., Akella, V., Fuerst, E. P., and Lurquin, P. F. (1996) Transgenic grain legumes obtained byin planta electroporation-mediated gene transfer.Mol. Biotech. 5, 85–96.

    Article  Google Scholar 

  36. Ahokas, H. (1989) Transfection of germinating barley seed electrophoretically with exogenous DNA.Theor. Appl. Genet. 77, 469–472.

    Article  CAS  Google Scholar 

  37. Songstad, D. D., Somers, D. A., and Griesbach, R. J. (1995) Advances in alternative DNA delivery techniques.Plant Cell Tissue Organ Culture 40, 1–15.

    Article  CAS  Google Scholar 

  38. Paszty, C. and Lurquin, P. F. (1988) Electroporation of tobacco protoplasts with homologous and non-homologous transformation vectors.J. Plant Physiol. 133, 332–335.

    Google Scholar 

  39. Wong, T.-K. and Neumann, E. (1982) Electric field mediated gene transfer.Biochem. Biophys. Res. Comm. 107, 584–587.

    PubMed  CAS  Google Scholar 

  40. Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA.Nucleic Acids Res. 15, 1311–1326.

    Article  PubMed  CAS  Google Scholar 

  41. Knutson, J. C. and Yee, D. (1987) Electroporation: parameters affecting transfer of DNA into mammalian cells.Anal. Biochem. 164, 44–52.

    Article  PubMed  CAS  Google Scholar 

  42. Stopper, H., Jones, H., and Zimmermann, U. (1987) Large scale transfection of mouse L-cells by electropermeabilization.Biochim. Biophys. Acta 900, 38–44.

    Article  PubMed  CAS  Google Scholar 

  43. ©Bio-Rad Laboratories, Hercules, CA (1993)Methods in Electroporation. Gene Pulser ® Electroprotocols.

  44. Titomirov, A. V., Sukharev, S., and Kistanova, E. (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA.Biochim. Biophys. Acta 1088, 131–134.

    PubMed  CAS  Google Scholar 

  45. Belehradek, J., Orlowski, S., Ramirez, L. H., Pron, G., Poddevin, B., and Mir, L. M. (1994) Electro-permeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin.Biochim. Biophys. Acta 1190, 155–163.

    Article  PubMed  CAS  Google Scholar 

  46. Tsong, T. Y. (1991) Electroporation of cell membranes.Biophys. J. 60, 297–306.

    PubMed  CAS  Google Scholar 

  47. Lurquin, P. F. (1993) Incorporation of genetic material into liposomes and transfer to cells, inLiposome Technology, vol. 2, 2nd ed., (Gregoriadis, G., ed.), CRC, Boca Raton, FL, pp. 129–139.

    Google Scholar 

  48. Sugar, I. P. (1989) Stochastic model of electric field-induced membrane pores, inElectroporation and Electrofusion in Cell Biology (Neumann, E., Sowers, A. E., and Jordan, C. A., eds.), Plenum, New York, pp. 97–110.

    Google Scholar 

  49. Zimmermann, U. and Vienken, J. (1982) Electric field-induced cell-to-cell fusion.J. Membrane Biol. 67, 165–182.

    Article  CAS  Google Scholar 

  50. Langridge, W. H. R., Li, B. J., and Szalay, A. A. (1985) Electric field mediated stable transformation of carrot protoplasts with naked DNA.Plant Cell Rep. 4, 355–359.

    Article  CAS  Google Scholar 

  51. Nishiguchi, M., Langridge, W. H. R., Szalay, A. A., and Zaitlin, M. (1986) Electroporation-mediated infection of tobacco leaf protoplasts with tobacco mosaic virus RNA and cucumber mosaic virus RNA.Plant Cell Rep. 5, 57–60.

    Article  CAS  Google Scholar 

  52. Hibi, T., Kano, H., Sugiura, M., Kazami, T., and Kimura, S. (1986) High efficiency electro-transfection of tobacco mesophyll protoplasts with tobacco mosaic virus RNA.J. Gen. Virol. 67, 2037–2042.

    CAS  Google Scholar 

  53. Bower, R. and Birch, R. G. (1990) Competence for gene transfer by electroporation in a sub-population of protoplasts from uniform carrot cell suspension cultures.Plant Cell Rep. 9, 386–389.

    Article  CAS  Google Scholar 

  54. Zerbib, D., Almaric, F., and Teissié, J. (1985) Electric field mediated transformation: Isolation and characterization of a TK+ subclone.Biochem. Biophys. Res. Comm. 129, 611–618.

    Article  PubMed  CAS  Google Scholar 

  55. Sixou, S., Eynard, N., Escoubas, J. M., Werne, E., and Teissié, J. (1991) Optimized conditions for electrotransformation of bacteria are related to the extent of electropermeabilization.Biochim. Biophys. Acta 1088, 135–138.

    PubMed  CAS  Google Scholar 

  56. Joersbo, M., Brunstedt, J. and Floto, F. (1990) Quantitative relationship between parameters of electroporation.J. Plant Physiol. 137, 169–174.

    Google Scholar 

  57. Pröls, M., Schell, J., and Steinbiß, H.-H. (1989) Critical evaluation of electromediated gene transfer and transient expression in plant cells, inElectroporation and Electrofusion in Cell Biology (Neumann, E., Sowers, A. E., and Jordan, C. A., eds.), Plenum, New York, pp. 367–375.

    Google Scholar 

  58. Hood, M. T. and Stachow, C. (1992) Influence of polyethylene glycol on the size ofSchizosaccharomyces pombe electropores.Appl. Environ. Microbiol. 58, 1201–1206.

    PubMed  CAS  Google Scholar 

  59. O'Hare, M. J., Ormerod, M. G., Imrie, P. R., Peacock, J. H., and Asche, W. (1989) Electropermeabilization and electrosensitivity of different types of mammalian cells, inElectroporation and Electrofusion in Cell Biology (Neumann, E., Sowers, A. E., and Jordan, C. A., eds.), Plenum, New York, pp. 319–330.

    Google Scholar 

  60. Kilbane II, J. J. and Bielaga, B. A. (1991) Instantaneous gene transfer from donor to recipient micro-organismsvia electroporation.BioTechniques 10, 354–365.

    PubMed  Google Scholar 

  61. Withers, H. L. (1995) Direct plasmid transfer between bacterial species and electrocuring, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 47–54.

    Chapter  Google Scholar 

  62. Gunn, L., Whelden, J., and Nickoloff, J. A. (1995) Transfer of episomal and integrated plasmids fromSaccharomyces cerevisiae toEscherichia coli by electroporation, inMethods in Molecular Biology, vol. 47: Electroporation Protocols for Microorganisms (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 55–66.

    Chapter  Google Scholar 

  63. Andreason, G. L. and Evans, G. A. (1988) Introduction and expression of DNA molecules in eukaryotic cells by electroporation.BioTechniques 6, 650–660.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lurquin, P.F. Gene transfer by electroporation. Mol Biotechnol 7, 5–35 (1997). https://doi.org/10.1007/BF02821542

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02821542

Index Entries

Navigation