, Volume 27, Issue 3, pp 501-514

The soft-bottom macrobenthos of North Carolina estuaries

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The structure of macro infaunal (>0.5 mm sieve size) assemblages was examined in samples of unconsolidated substrates collected during the summers of 1994–1997 at 208 stations throughout North Carolina estuaries. Numerical classification (cluster analysis) of stations resulted in 14 distinct site groups that reflected discernible habitatrelated patterns in species distributions. Multiple discriminant analysis, performed on synoptic abiotic variables (depth, salinity, dissolved oxygen, pH, percent silt-clay), showed that the separation of site groups was related primarily to salinity. Percent silt-clay had a secondary influence on the separation of sites within similar salinity zones. Species diversity among site groups generally decreased with decreasing salinity and increasing mud content of sediment. Nodal analysis showed a wide range in constancy and fidelity of species assemblages within site groups. Some assemblages dominated by euryhaline species had no particular affinity with any one site group. The strongest affinities, as evidenced by high values of both constancy and fidelity, were displayed by an assemblage of oligochaetes, insect larvae, gammaridean amphipods, and the clamCorbicula fluminea in tidal freshwater muds; and an assemblage of haustoriid amphipods, the bivalveDonax variabilis, the polychaeteParaonis fulgens, and unidentified echinoids at high-salinity sites in outer Pamlico Sound near ocean inlets. A series of stations with impaired benthic assemblages in polluted habitats emerged from the cluster analysis and was distinguishable from other site groups that reflected a greater influence of natural controlling factors (such as salinity and sediment type) on species distributions. These results suggest that the interaction of both anthropogenic and natural environmental controlling factors is important in defining the structure of these infaunal assemblages.