Skip to main content
Log in

Robust canonical correlations: A comparative study

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

Several approaches for robust canonical correlation analysis will be presented and discussed. A first method is based on the definition of canonical correlation analysis as looking for linear combinations of two sets of variables having maximal (robust) correlation. A second method is based on alternating robust regressions. These methods are discussed in detail and compared with the more traditional approach to robust canonical correlation via covariance matrix estimates. A simulation study compares the performance of the different estimators under several kinds of sampling schemes. Robustness is studied as well by breakdown plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Becker, C. and Gather, U. (2001). The largest nonidentifiable outlier: A comparison of multivariate simultaneous outlier identification rules.Computational Statistics and Data Analysis,36, 119–127.

    Article  MathSciNet  Google Scholar 

  • Croux, C., and Dehon, C. (2002). Analyse canonique basée sur des estimateurs robustes de la matrice de covariance.La Revue de Statistique Appliquée,2, 5–26.

    Google Scholar 

  • Croux, C., Filzmoser, P., Pison, G., and Rousseeuw, P.J. (2003). Fitting multiplicative models by robust alternating regressions.Statistics and Computing,13, 23–36.

    Article  MathSciNet  Google Scholar 

  • Croux, C., and Ruiz-Gazen, A. (1996). A fast algorithm for robust principal components based on projection pursuit. In: A. Prat (ed.),COMP-STAT: Proceedings in Computational Statistics, Physica-Verlag, Heidelberg, pp. 211–216.

    Google Scholar 

  • Das, S. and Sen, P.K. (1998). Canonical correlations. In: P. Armitage and T. Colton (eds.),Encyclopedia of Biostatistics, Vol. 1, Wiley, New York, pp. 468–482.

    Google Scholar 

  • Filzmoser, P., Dehon, C., and Croux, C. (2000). Outlier resistant estimators for canonical correlation analysis. In: J.G. Betlehem and P.G.M. van der Heijden (eds.),COMPSTAT: Proceedings in Computational Statistics, Physica-Verlag, Heidelberg, pp. 301–306.

    Chapter  Google Scholar 

  • Hotelling, H. (1936). Relations between two sets of variates.Biometrika,28, 321–377.

    Article  Google Scholar 

  • Huber, P.J. (1981).Robust Statistics. Wiley, New York.

    Book  Google Scholar 

  • Huber, P.J. (1985). Projection pursuit.The Annals of Statistics,13, 435–525.

    Article  MathSciNet  Google Scholar 

  • Johnson, R. A., and Wichern, D.W. (1998).Applied Multivariate Statistical Analysis. Prentice-Hall, London.

    MATH  Google Scholar 

  • Karnel, G. (1991). Robust canonical correlation and correspondence analysis. In:The Frontiers of Statistical Scientific and Industrial Applications, (Volume II of the proceedings of ICOSCO-I, The First International Conference on Statistical Computing), American Sciences Press, Strassbourg, pp. 335–354.

    Google Scholar 

  • Lyttkens, E. (1972). Regression aspects of canonical correlation.Journal of Multivariate Analysis,2, 418–439.

    Article  MathSciNet  Google Scholar 

  • Maronna, R.A. (1976). Robust M-estimators of multivariate location and scatter.The Annals of Statistics,4, 51–67.

    Article  MathSciNet  Google Scholar 

  • Oliveira, M.R., and Branco, J.A. (2000). Projection pursuit approach to robust canonical correlation analysis. In: J.G. Betlehem and P.G.M. van der Heijden (eds.),COMPSTAT: Proceedings in Computational Statistics, Physica-Verlag, Heidelberg, pp. 415–420.

    Chapter  Google Scholar 

  • Rencher, A.C. (1998).Multivariate Statistical Inference and Applications, John Wiley, New York.

    MATH  Google Scholar 

  • Romanazzi, M. (1992). Influence in canonical correlation analysis.Psychometrika,57, 237–259.

    Article  MathSciNet  Google Scholar 

  • Rousseeuw, P.J. (1984). Least median of squares regression.Journal of the American Statistical Association,79, 871–880.

    Article  MathSciNet  Google Scholar 

  • Rousseeuw, P.J. (1985). Multivariate estimation with high breakdown point. In: W. Grossmann, G. Pflug, I. Vincze, and W. Wertz (eds.),Mathematical Statistics and Applications, Vol. B, Reidel, Dordrecht, pp. 283–297.

    Chapter  Google Scholar 

  • Rousseeuw, P.J., and Van Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator.Technometrics,41, 212–223.

    Article  Google Scholar 

  • Rousseeuw, P.J. and Van Zomeren, B. (1990). Unmasking multivariate outliers and leverage points.Journal of the American Statistical Association,85, 633–651.

    Article  Google Scholar 

  • Taskinen, S., Croux, C., Kankainen, A., Ollila, E., and Oja, H. (2003). Canonical Analysis based on Scatter Matrices. Manuscript.

  • Taskinen, S., Oja, H., and Randies, R.H. (2004). Multivariate nonparametric tests of independence. Manuscript, conditionally accepted.

  • Tenenhaus, M. (1998).La Régression PLS. Théorie et pratique, Éditions Technip, Paris.

    MATH  Google Scholar 

  • Wold, H. (1966). Nonlinear estimation by iterative least squares procedures. In: F.N. David (ed.),A Festschrift for J. Neyman, Wiley, New York, pp. 411–444.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for helpful comments of two anonymous referees.

Author information

Authors and Affiliations

Authors

6 Appendix

6 Appendix

Least Squares Alternating Regression Scheme (using the notations of Section 3):

  • Step 1: \(\boldsymbol{X}_{0}=\boldsymbol{X}-\mathbf{1} \overline{\boldsymbol{x}}^{t}, \boldsymbol{Y}_{0}=\boldsymbol{Y}-\mathbf{1} \overline{\boldsymbol{y}}^{t}\)

  • Step 2: For l = 1, …, k:

    • Step 2.1: Residual spaces (only if l > 1):

      $$\begin{array}{l}{\boldsymbol{X}_{l-1}=\left(\boldsymbol{I}_{n}-\frac{\boldsymbol{u}_{l-1} \boldsymbol{u}_{l-1}^{t}}{\boldsymbol{u}_{l-1}^{t} \boldsymbol{u}_{l-1}}\right) \boldsymbol{X}_{l-2}} \\ {\boldsymbol{Y}_{l-1}=\left(\boldsymbol{I}_{n}-\frac{\boldsymbol{v}_{l-1} \boldsymbol{v}_{l-1}^{t}}{\boldsymbol{v}_{l-1}^{t} \boldsymbol{v}_{l-1}}\right) \boldsymbol{Y}_{l-2}}\end{array}$$
    • Step 2.2: Starting values (using first principal component \(\boldsymbol{z}_{1}^{l-1}\) of Xl−1): \(\begin{array}{l}{\hat{b}_{l}^{(0)}\ =\left(\boldsymbol{Y}_{l-1}^{t} \boldsymbol{Y}_{l-1}\right)^{-} \boldsymbol{Y}_{l-1}^{t} \boldsymbol{z}_{1}^{l-1}} \\ {\boldsymbol{\beta}_{l}^{(0)}=\frac{\hat{\boldsymbol{b}}_{l}^{(0)}}{\left\|\hat{\boldsymbol{b}}_{l}^{(0)}\right\|}} \\ {\boldsymbol{v}_{l}^{(0)}=\boldsymbol{Y}_{l-1} \boldsymbol{\beta}_{l}^{(0)}}\end{array}\)

    • Step 2.3: From iteration s = 1 to convergence:

      $$\begin{aligned} \hat{\boldsymbol{a}}_{l}^{(s)} &=\left(\boldsymbol{X}_{l-1}^{t} \boldsymbol{X}_{l-1}\right)^{-} \boldsymbol{X}_{l-1}^{t} \boldsymbol{v}_{l}^{(s-1)} \\ \boldsymbol{\alpha}_{l}^{(s)} &=\frac{\hat{\boldsymbol{a}}_{l}^{(s)}}{\left\|\hat{\boldsymbol{a}}_{l}^{(s)}\right\|} \\ \boldsymbol{u}_{l}^{(s)} &=\boldsymbol{X}_{l-1} \boldsymbol{\alpha}_{l}^{(s)} \\ \hat{\boldsymbol{b}}_{l}^{(s)} &=\left(\boldsymbol{Y}_{l-1}^{t} \boldsymbol{Y}_{l-1}\right)^{-} \boldsymbol{Y}_{l-1}^{t} \boldsymbol{u}_{l}^{(s)}\\ \boldsymbol{\beta}_{l}^{(s)} &=\frac{\hat{\boldsymbol{b}}_{l}^{(s)}}{\left\|\hat{\boldsymbol{b}}_{l}^{(s)}\right\|} \\ \boldsymbol{v}_{l}^{(s)} &= \boldsymbol{Y}_{l-1}\boldsymbol{\beta}_{l}^{s}\end{aligned}$$
    • Step 2.4: After convergence, resulting in \(\boldsymbol{u}_{l}^{*}, \boldsymbol{v}_{l}^{*}, \boldsymbol{\alpha}_{l}^{*}, \boldsymbol{\beta}_{1}^{*}\):

      $$\left|r_{l}=\operatorname{Corr}\left(\boldsymbol{u}_{l}^{*}, \boldsymbol{v}_{l}^{*}\right)\right|$$
      • Step 2.4.1: If l = 1: \(\boldsymbol{u}_{1}=\boldsymbol{u}_{1}^{*}, \boldsymbol{v}_{1}=\boldsymbol{v}_{1}^{*}, \hat{\boldsymbol{\alpha}}_{1}=\boldsymbol{\alpha}_{1}^{*}, \boldsymbol{\beta}_{1}=\boldsymbol{\beta}_{1}^{*}\)

      • Step 2.4.2: If l > 1: \(\begin{array}{l}{\boldsymbol{u}_{l}=\boldsymbol{u}_{l}^{*}} \\ {\hat{\boldsymbol{\alpha}}_{l}=\left(\boldsymbol{X}_{0}^{t} \boldsymbol{X}_{0}\right)^{-1} \boldsymbol{X}_{0}^{t} \boldsymbol{u}_{l}} \\ {\boldsymbol{v}_{l}=\boldsymbol{v}_{l}^{*}} \\ {\hat{\boldsymbol{\beta}}_{l}=\left(\boldsymbol{Y}_{0}^{t} \boldsymbol{Y}_{0}\right)^{-1} \boldsymbol{Y}_{0}^{t} \boldsymbol{v}_{l}}\end{array}\)

Robust Alternating Regression Scheme (using the notations of Section 3):

  • Step 1: \(\boldsymbol{X}_{0}=\boldsymbol{X}-\mathbf{1} \tilde{\boldsymbol{x}}^{t}, \boldsymbol{Y}_{0}=\boldsymbol{Y}-\mathbf{1} \tilde{\boldsymbol{y}}^{t}\)\(\tilde{\boldsymbol{x}}\) and ӯ are the column-wise medians of X and Y, respectively.

  • Step 2: For l = 1, …, k:

    • Step 2.1: Residual spaces (only if l > 1):

      • Xl−1 are the estimated residuals of Xl−2 = ul−1ct + ε1 using weighted L1 regressions with weights wi;(ul−1)

      • Yl−1 are the estimated residuals of Yl−2 = vl−1dt + ε2 using weighted L1 regressions with weights wi(vl−1)

    • Step 2.2: Starting values:

      • Compute the first robust principal component \(\boldsymbol{z}_{1}^{l-1}\) of Xl−1 using the algorithm of Croux and Ruiz-Gazen (1996)

      • \(\hat{\boldsymbol{b}}_{l}^{(0)}\) are the estimated coefficients of \(z_{1}^{l-1}=\boldsymbol{Y}_{l-1} \boldsymbol{b}_{l}^{(0)}+\varepsilon_{3}\) using weighted L1 regression with weights \(w_{i}\left(\boldsymbol{Y}_{l-1}^{*}\right)\)

      • $$\begin{array}{l}{\boldsymbol{\beta}_{l}^{(0)}=\frac{\hat{\boldsymbol{b}}_{l}^{(0)}}{\left\|\hat{\boldsymbol{b}}_{l}^{(0)}\right\|}} \\ {v_{l}^{(0)}=\boldsymbol{Y}_{l-1} \boldsymbol{\beta}_{l}^{(0)}}\end{array}$$
    • Step 2.3: From iteration s = 1 upto convergence:

      • \(\hat{\boldsymbol{a}}_{l}^{(s)}\) are the estimated coefficients of \(\boldsymbol{v}_{l}^{s-1}=\boldsymbol{X}_{l-1} \boldsymbol{a}_{l}^{(s)}+\boldsymbol{\varepsilon}_{4}\) using weighted L1 regression with weights \(w_{i}\left(\boldsymbol{X}_{l-1}^{*}\right)\)

      • \(\begin{aligned} \boldsymbol{\alpha}_{l}^{(s)} &=\frac{\hat{\boldsymbol{a}}_{l}^{(s)}}{\left\|\hat{\boldsymbol{a}}_{l}^{(s)}\right\|} \\ \boldsymbol{u}_{l}^{(s)} &=\boldsymbol{X}_{l-1} \boldsymbol{\alpha}_{l}^{(s)} \end{aligned}\) are the estimated coefficients of \(\boldsymbol{u}_{l}^{s-1}=\boldsymbol{Y}_{l-1} \boldsymbol{b}_{l}^{(s)}+\boldsymbol{\varepsilon}_{5}\) using weighted L1 regression with weights \(w_{i}\left(\boldsymbol{Y}_{l-1}^{*}\right)\)

      • $$\begin{array}{l}{\boldsymbol{\beta}_{l}^{(s)}=\frac{\hat{\boldsymbol{b}}_{l}^{(s)}}{\left\|\hat{\boldsymbol{b}}_{l}^{(s)}\right\|}} \\ {\boldsymbol{v}_{l}^{(s)}=\boldsymbol{Y}_{l-1} \boldsymbol{\beta}_{l}^{(s)}}\end{array}$$
      • Step 2.4: After convergence, resulting in \(\boldsymbol{u}_{l}^{*}, \boldsymbol{v}_{l}^{*}, \boldsymbol{\alpha}_{l}^{*}, \boldsymbol{\beta}_{1}^{*}\): \(r_{l}=\operatorname{Corr}\left(\boldsymbol{u}_{l}^{*}, \boldsymbol{v}_{l}^{*}\right)\); Corr is a robust correlation measure like the bivariate MCD correlation discussed in Section 2

        • Step 2.4.1: If l = 1: \(\boldsymbol{u}_{1}=\boldsymbol{u}_{1}^{*}, \boldsymbol{v}_{1}=\boldsymbol{v}_{1}^{*}, \hat{\boldsymbol{\alpha}}_{1}=\boldsymbol{\alpha}_{1}^{*}, \hat{\boldsymbol{\beta}}_{1}=\boldsymbol{\beta}_{1}^{*}\)

        • Step 2.4.2: If l > 1:

          • Ul−1 = [u1, …, ul−1]

          • ũl are the estimated residuals of \(\boldsymbol{u}_{l}^{*}=\boldsymbol{U}_{l-1}\boldsymbol{e}+\boldsymbol{\varepsilon}_{6}\) using robust LTS regression

          • \(\hat{\boldsymbol{\alpha}}_{l}\) are the estimated coefficients of ũl = X0f + ε7 using robust LTS regression

          • \(\boldsymbol{u}_{l}=\boldsymbol{X}_{0} \hat{\boldsymbol{\alpha}}_{l}\)

          • Vl−1 = [v1, …, vl−1]

          • l are the estimated residuals of \(\boldsymbol{v}_{l}^{*}=\boldsymbol{V}_{l-1} \boldsymbol{g}+\boldsymbol{\varepsilon}_{8}\) using robust LTS regression

          • \(\hat{\boldsymbol{\beta}}_{l}\) are the estimated coefficients of l = X0h + ε9 using robust LTS regression

          • \(\boldsymbol{v}_{l}=\boldsymbol{Y}_{0} \hat{\boldsymbol{\beta}}_{l}\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branco, J.A., Croux, C., Filzmoser, P. et al. Robust canonical correlations: A comparative study. Computational Statistics 20, 203–229 (2005). https://doi.org/10.1007/BF02789700

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789700

Keywords

Navigation