Skip to main content
Log in

Lipid peroxidation in rats administrated with mercuric chloride

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Parenteral administration of mercuric chloride (HgCl2) to rats enhanced lipid peroxidation in liver, kidney, lung, testis, and serum (but not in heart, spleen, or muscle), as measured by the thiobarbituric acid reaction for malondialdehyde (MDA) in fresh tissue homogenates and body fluids. After sc injection of HgCl2 (5 mg/kg body wt), MDA concentrations in liver and kidney became significantly increased by 9 h and reached peak values at 24 h. Dose-response studies were carried out with male albino rats of the Fisher-344 strain (body wt 170–280 g) injected with 1, 3, 5 mg Hg/kg as HgCl2 and sacrificed after 24 h. In time-response studies, animals were administered 5 mg Hg/kg as HgCl2 and sacrificed after 3, 9, 18, 24, and 48 h. Studies in the authors' laboratory have shown that (1) concentrations of MDA are increased in targets (liver, kidney, lung, and testis) of HgCl2-treated rats; (2) severity of hepatotoxicity and nephrotoxicity is generally consistent with the elevation of Hg and MDA concentrations, based upon the time-course and dose-effect relationships observed after administration of HgCl2 to rats; and (3) concentrations of MDA are reduced in target tissues after pretreatment with antioxidants and chelators to HgCl2-treated rats. The results of this study implicate that the lipid peroxidation is one of the molecular mechanisms for cell injury in acute HgCl2 poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. W. Sunderman Jr.,Acta Pharmacol. Toxicol. 59 (suppl. 7), 248–255 (1986).

    CAS  Google Scholar 

  2. J. M. C. Gutteridge and B. Halliwell,Trends Biochem. Sci. 15, 129–135 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. S. H. Y. Wong, J. A. Knight, S. M. Hopfer, O. Zaharia, C. N. Leach Jr., and F. W. Sunderman Jr.,Clin. Chem. 33, 214–220 (1987).

    PubMed  CAS  Google Scholar 

  4. B. Halliwell and J. M. C. Gutteridge,Biochem. J. 219, 1–14 (1984).

    PubMed  CAS  Google Scholar 

  5. B. Halliwell and J. M. C. Gutteridge,Molec. Aspects Med. 8, 89–193 (1985).

    Article  CAS  Google Scholar 

  6. M. Younes and C. P. Siegers,Biochem. Pharmacol. 33, 2001–2003 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. N. Sugawara and C. Sugawara,J. Appl. Biochem. 6, 199–204 (1984).

    PubMed  CAS  Google Scholar 

  8. Y. Yamane, H. Fukino, and M. Imagawa,Chem. Pharm. Bull. 25, 1509–1518 (1977).

    PubMed  CAS  Google Scholar 

  9. A. Rothstein,Fed. Proc. 18, 1029–1038 (1959).

    Google Scholar 

  10. B. L. Vallee and D. D. Ulmer,Annu. Rev. Biochem. 41, 91–128 (1972).

    Article  PubMed  CAS  Google Scholar 

  11. H. Fukino, M. Hirai, Y. M. Hsueh, and Y. Yamane,Toxicol. Appl. Pharmacol. 73, 395–401 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. M. Yonaha, E. Itoh, Y. Ohbayashi, and M. Uchiyama,Res. Commun. Chem. Pathol. Pharmacol. 28, 105–112 (1980).

    PubMed  CAS  Google Scholar 

  13. R. C. Zalme, E. M. McDowell, R. B. Nagle, J. S. McNell, W. Flamenbaum, and B. F. Tramp,Arch. B. Cell Pathol. 22, 197–216 (1976).

    CAS  Google Scholar 

  14. W. B. Kinter and J. B. Pritchard, Altered permeability of cell membranes, inHandbook of Physiology, Reactions to Environmental Agents, D. H. K. Lee, H. L. Falk, S. D. Murphy, and S. R. Geiger, eds., Williams & Wilkins, Baltimore, Section 9, pp. 563–576 (1977).

    Google Scholar 

  15. M. Yonaha, Y. Ohbayashi, T. Ichinose, and M. Sagai,Chem. Pharm. Bull. 30, 1437–1443 (1982).

    PubMed  CAS  Google Scholar 

  16. N. H. Stacey and H. Kappus,Toxicol. Appl. Pharmacol. 63, 29–35 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. F. W. Sunderman Jr., A. Marzouk, S. M. Hopfer, O. Zaharia, and M. C. Reid,Ann. Clin. Lab. Sci. 15, 229–236 (1985).

    PubMed  CAS  Google Scholar 

  18. J. J. Doughery and W. G. Hoekstra,Proc. Soc. Exp. Biol. Med. 169, 201–208 (1982).

    Google Scholar 

  19. O. A. Levander, V. C. Morris, and R. J. Ferretti,J. Nutri. 107, 363–372 (1977).

    CAS  Google Scholar 

  20. C. H. Gallagher,Austral. J. Exp. Biol. 40, 241–250 (1962).

    Article  PubMed  CAS  Google Scholar 

  21. J. B. Nielsen, H. R. Andersen, and O. Andersen,J. Toxicol. Environ. Health. 34, 469–483 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. W. C. Sin, M. K. Wong, and Y. M. Sin,Bull. Environ. Contam. Toxicol. 42, 942–948 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. K. N. Kee and Y. M. Sin,Bull. Environ. Contam. Toxicol. 48, 509–514 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. M. Comporti,Lab. Invest. 53, 599–623 (1985).

    PubMed  CAS  Google Scholar 

  25. S. V. S. Rana and P. R. Boora,Bull. Environ. Contam. Toxicol. 48, 120–124 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. S. M. Lin, C. H. Chiang, C. L. Tseng, and M. H. Yang,Radiochem. Radioanal. Letters 56, 261–272 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y.L., Cheng, S.L. & Lin, T.H. Lipid peroxidation in rats administrated with mercuric chloride. Biol Trace Elem Res 52, 193–206 (1996). https://doi.org/10.1007/BF02789461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789461

Index Entries

Navigation