Skip to main content
Log in

Inverse polymerase chain reaction

An efficient approach to cloning cDNA ends

Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The conventional polymerase chain reaction (PCR) requires that DNA sequences at both ends of the region to be amplified be known. Inverse PCR (IPCR) and anchored PCR overcome this limitation and amplify flanking unknown DNA sequences by utilizing inverse amplification and a universal primer, rcspectively. The major advantage of IPCR is that two gene-specific primers arc reserved for specific and efficient amplification of the unknown cDNA ends on the basis of a small stretch of known sequence. The protocol consists of five steps: reverse transcription, synthesis of second strand cDNA, circularization of double strand cDNA. reopen the circle DNA, and amplification of the inverse DNA fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Verma, I. M., Temple, G. F., Fan, H., and Baltimore, D. (1972) In vitro synthesis of double-stranded DNA complimentary to rabbit reticulocyte 10S RNA.Nature 235, 163–169.

    Article  CAS  Google Scholar 

  2. Akowitz, A. and Mamuelidis, L. (1989) A novel cDNA/PCR strategy for efficient cloning of small amounts of undefined RNA.Gene 81, 295–306.

    Article  PubMed  CAS  Google Scholar 

  3. Okayama, H., Kawaichi, M., Brownstein, M., Lee, F., Yokota, T., and Arai, K. (1987) High-efficiency cloning of full-length cDNA; Construction and screening of cDNA expression libraries for mammalian cells.Methods Enzymol. 154, 3–28.

    Article  PubMed  CAS  Google Scholar 

  4. Brenner, C. A., Tarn, A. W., Nelson, P. A., Engleman, E. G., Suzuki, N., Fry, K. E., and Larrick, J. W. (1989) Message amplification phenotyping (MAPPing): a technique to simultaneously measure multiple mRNAs from small numbers of cells.BioTechniques 7, 1096–1103.

    PubMed  CAS  Google Scholar 

  5. Frohman, M. A. (1990) RACE: Rapid amplification of cDNA ends, inPCR Protocols: A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic, San Diego, CA., pp. 28–38.

    Google Scholar 

  6. Shyamala, V. and Ames, G. F.-L. (1989) Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR.Gene 84 1–8.

    Article  PubMed  CAS  Google Scholar 

  7. Huang, S.-H., Jong, A. Y., Yang, W., and Holcenberg, J. (1993) Amplification of gene ends from gene libraries by PCR with single-sided specificity, inMethods Molecular Biology, vol. 15: PCR Protocols (White, B. A., ed.), Humana, Totowa, NJ, pp. 357–363.

    Chapter  Google Scholar 

  8. Ochman, H., Gerber, A. S., and Hartl, D. L. (1988) Genetic applications of an inverse polymerase chain reaction.Genetics 120, 621–625.

    PubMed  CAS  Google Scholar 

  9. Triglia, T., Peterson, M. G., and Kemp, D. J. (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences.Nucleic Acids Res. 16, 8186.

    Article  PubMed  CAS  Google Scholar 

  10. Huang, S.-H., Hu, Y. Y., Wu, C.-H., and Holcenberg, J. (1990) A simple method for direct cloning cDNA sequence that flanks a region of known sequence from total RNA by applying the inverse polymerase chain reaction.Nucleic Acids Res. 18, 1922.

    Article  PubMed  CAS  Google Scholar 

  11. Delort, J., Dumas, J. B., Darmon, M. C., and Mallet, J. (1989) An efficient strategy for cloning 5′ extremities of rare transcripts permits isolation of multiple 5′-untranslated regions of rat tryptophan hydroxylase mRNA.Nucleic Acids Res. 17 6439–6448.

    Article  PubMed  CAS  Google Scholar 

  12. Cusi, M. G., Cioé, L., and Rovera, G. (1992) PCR amplification of GC-rich templates containing palindromic sequences using initial alkali denaturation.BioTechniques 12, 502–504.

    PubMed  CAS  Google Scholar 

  13. Lau, E. C., Li, Z.-Q., and Slavkin, S. C. (1993) Preparation of denatured plasmid templates for PCR amplification.BioTechniques 14, 378.

    PubMed  CAS  Google Scholar 

  14. Green, I. R. and Sargan, D. R. (1991) Sequence of the cDNA encoding ovine tumor necrosis factor-α: problems with cloning by inverse PCR.Gene 109, 203–210.

    Article  PubMed  CAS  Google Scholar 

  15. Zilberberg, N. and Gurevitz, M. (1993) Rapid isolation of full length cDNA clones by “Inverse PCR”: purification of a scorpion cDNA family encoding α-neurotoxins.Anal. Biochem. 209, 203–205.

    Article  PubMed  CAS  Google Scholar 

  16. Austin, C. A., Sng, J.-H., Patel, S., and Fisher, L. M. (1993) Novel HeLa topoisomerase II is the IIβ isoform: complete coding sequence and homology with other type II topoisomerases.Biochim. Biophys. Acta 1172, 283–291

    PubMed  CAS  Google Scholar 

  17. Delidow, B. C., Lynch, J. P., Peluso, J. J., and White, B. A. (1993) Polymerase chain reaction: basic protocols, inMethods in Molecular Biology vol 15: PCR Protocols (White, B. A., ed.), Humana, Totowa, NJ, pp. 1–29.

    Chapter  Google Scholar 

  18. Davis, L. G., Dibner, M. D., and Battey, J. F. (1986)Basic Methods in Molecular Biology, Elsevier, New York.

    Google Scholar 

  19. Kru, M. S. and Berger, S. L. (1987) First strand cDNA synthesis primed by oligo(dT).Methods Enzymol. 152, 316–325.

    Google Scholar 

  20. Promega (1991)Protocols and Applications (2nd ed.), Promega Corporation, Madison, WI, pp. 199–238.

    Google Scholar 

  21. Sambrook, J., Fritch, E. F., and Maniatis, T. (1989)Molecular Cloning, 2nd ed Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  22. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T. Mullis, K. B., and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.Science 239, 487–491

    Article  PubMed  CAS  Google Scholar 

  23. Moon, I. S. and Krause, M. O. (1991) Common RNA polymerase I II and III upstream elements in mouse 7SK gene locus revealed by the inverse polymerase chain reaction.DNA Cell Biol.,10, 23–32.

    PubMed  CAS  Google Scholar 

  24. Strobel, S. A. and Dervan, P. B. (1990) Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation.Science 249, 73–75

    Article  PubMed  CAS  Google Scholar 

  25. Dreyer, G. B. and Dervan, P. B. (1985) Sequence-specific cleavage of single stranded DNA: Oligodeoxynucleotide-EDTA. Fe(II).Proc. Natl. Acad. Sci. USA 82, 968–972.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang, H., Scholl, R., Browse, J., and Somerville, C. (1988) Double strand DNA sequencing as a choice for DNA sequencing.Nucleic Acids Res. 16, 1220

    Article  PubMed  CAS  Google Scholar 

  27. Sugino, A., Goodman, H. M., Heynecker, H. L., Shine, J., Boyer, H. W. and Cozzarelli N. R. (1977) Interaction of bacteriophage T4 RNA and DNA ligases in joining of duplex DNA at base-paired ends.J. Biol. Chem. 252, 3987–3994

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SH. Inverse polymerase chain reaction. Mol Biotechnol 2, 15–22 (1994). https://doi.org/10.1007/BF02789286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789286

Index Entries

Navigation