Skip to main content
Log in

The human thymus

A chimeric organ comprised of central and peripheral lymphoid components

  • Published:
Immunologic Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 1998

Abstract

The human thymus is a lymphoepithelial organ in which T cells develop during fetal life. After maturation and selection in the fetal thymic microenvironment, T cells emigrate to peripheral lymphoid tissues such as the spleen, gut, and lymph nodes, and establish the peripheral T cell repertoire. Although the thymus has enormous regenerative capacity during fetal development, the regenerative capacity of the human postnatal thymus decreases over time. With the advent of intensive chemotherapy regimens for a variety of cancer syndromes, and the discovery that infection with the Human Immunodeficiency Virus (HIV) leads to severe loss of CD4+ T cells, has come the need to understand the role of the human thymus in reconstitution of the immune system in adults. During a recent study of the thymus in HIV infection, we observed many CD8+ T cells in AIDS thymuses that had markers consistent with those of mature effector cytotoxic T cells usually found in peripheral immune tissues, and noted these CD8+ effector T cells were predominately located in a thymic zone termed the thymic perivascular space. This article reviews our own work on the thymus in HIV-1 infection, and discusses the work of others that, taken together, suggest that the thymus contains peripheral immune cell components not only in the setting of HIV infection, but also in myasthenia gravis, as well as throughout normal life during the process of thymus involution. Thus, the human thymus can be thought of as a chimeric organ comprised of both central and peripheral lymphoid tissues. These observations have led us to postulate that the thymic epithelial atrophy and decrease in thymopoiesis that occurs in myasthenia gravis, HIV-1 infection, and thymic involution may in part derive from cytokines or other factors produced by peripheral immune cells within the thymic perivascular space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Shamik Majumdar, Sanmoy Pathak & Dipankar Nandi

References

  1. Haynes BF, Denning SM: Lymphopoiesis; in Stamatoyannopoulos G, Nienhuis A, Majerus P, Varmus H (eds): The Molec-ular Basis of Blood Diseases, 2nd ed. W.B.Saunders, 1993,425–452.

  2. Haynes BF, Denning SM, Le PT, Singer KH: Human intrathymic T cell differentiation. Sem Immunol 1990;2:67–77.

    CAS  Google Scholar 

  3. Hale LP, Haynes BF: Overview of development and function of lymphocytes; in Gallin J, Snyderman R, Fearon D, Haynes B, Nathan C (eds): Inflammtion: Basic Principles and Clinical Correlates, 3rd ed., Raven, New York, 1998, in press.

    Google Scholar 

  4. Mackall CL, Fleisher TA, Brown MA, Andrich MP, et al.: Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Eng J Med 1995;332:143–183.

    Article  CAS  Google Scholar 

  5. Mackall CL, Fleisher TA, Brown MA, Andrich PM, et al.: Distinctions between CD8+ and CD4+ T cell regenerative pathways result in prolonger T cell subset imbalance after intensive chemotherapy. Blood 1997;89:3700–3707.

    PubMed  CAS  Google Scholar 

  6. Mackall CL, Hakim FT, Gress RE, et al.: T cell regeneration: all repertoires are not created equal. Immunol Today 1997; 18: 245–251.

    Article  PubMed  CAS  Google Scholar 

  7. Haynes BF, Hale LP, Weinhold KJ, Patel DD, et al.: Analysis of the role of the adult thymus in reconstitution of peripheral T lymphocytes in human immunodeficiency virus Type 1 infection. 1998; submitted.

  8. Haynes BF: Human thymic epithelium and T cell development: current issues and future direction. Thymus 1990; 16:143–157.

    PubMed  CAS  Google Scholar 

  9. Haynes BF, Heinly CS: Early human T cell development: Analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J Exp Med 1995;181: 1445–1458.

    Article  PubMed  CAS  Google Scholar 

  10. George JF, Schroeder HW, Jr: Developmental regulation of D beta reading frame and junctional diversity in T cell receptor-beta transcripts from human thymus. J Immunol 1992;148:1230–1239.

    PubMed  CAS  Google Scholar 

  11. Bonati A, Zanelli P, Ferrari S, Plebani A, Starchich B, et al.: T cell receptor beta-chain gene rearrangement and expression during human thymic ontogenesis. Blood 1992;79:1472–1483.

    PubMed  CAS  Google Scholar 

  12. Haynes BF: Lymphopoiesis, in: Stamatoyannopoulos G, Nienhuis A, Majerus P, Varmus H (eds): The Molecular Basis of Blood Diseases, 2nd ed.WB Saunders, 1993, 425–462.

  13. Pilarski LM, Deans IP: CD45 isoform transitions on multinegative human thymocytes differentiation in vitro mimic patterns predicted for selective events in vivo. Immunol Cell Biol 1993; 71:289–301.

    Article  PubMed  Google Scholar 

  14. Ritter MA, Boyd RL: Development in the thymus: it takes two to tango. Immunol Today 1993; 14: 462–468.

    Article  PubMed  CAS  Google Scholar 

  15. Le PT, Lazorick S, Whichard LP, Haynes BF, Singer KH: Regulation of cytokine production in the human thymus: Epidermal Growth Factor and Transforming Growth Factor regulate mRNA levels of IL 1, ILlß and IL6 in human thymic epithelial (TE) cells at a post-transcriptional level. J Exp Med 1991;174:1147–1157.

    Article  PubMed  CAS  Google Scholar 

  16. Lobach DF, Scearce RM, Haynes BF: The human thymic microenvironment. Phenotypic characterization of Hassall’s bodies with the use of monoclonal antibodies. J Immunol 1985;134:250–257.

    PubMed  CAS  Google Scholar 

  17. Laster AJ, Itoh T, Palker TJ, Haynes BF: The human thymic microenvironment: Thymic epithelium contains specific keratins associated with early and late stages of epidermal keratinocyte maturation. Differentiation 1986;31:67–77.

    Article  PubMed  CAS  Google Scholar 

  18. Lobach DF, Itoh T, Singer KH, Haynes BF: The thymic microenvironment. Demonstration of thymic epithelial cell differentiation in vitro. Differentiation 1987;34:50–59.

    Article  PubMed  CAS  Google Scholar 

  19. Vollger LW, Tuck DT, Springer TA, Haynes BF, Singer KH: Thymocyte binding to human thymic epithelial cells is inhibited by monoclonal antibodies to CD-2 and LFA-3 antigens. J Immunol 1987;138:358–363.

    PubMed  CAS  Google Scholar 

  20. Denning SM. Tuck DT. Vollger LW, Springer TA, Singer KH, Haynes BF: Monoclonal antibodies to CD2 and LFA-3 antigens inhibit human thymic epithelial cell dependent mature thymocyte activation. J Immunol 1987;139:2573–2578.

    PubMed  CAS  Google Scholar 

  21. Singer KH, Wolf LS, Lobach DS, Denning SM, Tuck DT, Robertson AL, Haynes BF: Human thymocytes bind to autologous and allogeneic thymic epithelial cells in vitro. Proc Natl Acad Sci USA 1986;83:6588–6592.

    Article  PubMed  CAS  Google Scholar 

  22. Singer KH, Denning SM, Whichard LP, Haynes BF: Thymocyte LFA-1 and thymic epithelial cell ICAM-1 molecules mediate binding of activated human thymocytes to thymic epithelial cells. J Immunol 1990;144:2931–2939.

    PubMed  CAS  Google Scholar 

  23. Patel DD, Wee SF, Whichard LP, Bowen MA, et al.: Identification and characterization of an 100 kDa ligand for CD6 on human thymic epithelial cells. J Exp Med 1995; 181:1563–1568.

    Article  PubMed  CAS  Google Scholar 

  24. Bowen MA, Patel DD, Modrell B, Malacko AR et al.: Cloning and characterization of the CD6 ligand that mediates the binding of thymocytes to thymic epithelium. J Exp Med 1995:181:2213–2220.

    Article  PubMed  CAS  Google Scholar 

  25. Le PT, Vollger LW, Haynes BF, Singer KH: Ligand binding to the LFA-3 cell adhesion molecule induces IL1 production by human thymic epithelium cells. J Immunol 1990;144:4541–4547.

    PubMed  CAS  Google Scholar 

  26. Bolotin E, Smogorzewska M, Smith S, Widmer M, Weinberg K: Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood 1996; 88: 1887–1894.

    PubMed  CAS  Google Scholar 

  27. Noguchi M, Yi H, Rosenblatt HM, et al.: Interleukin-2 receptor γ chain mutation results in X-linked severe combined’immunodeficiency. Cell 1993;73:147–157.

    Article  PubMed  CAS  Google Scholar 

  28. Plum J, De Smedt M, Leclercq G, Verhasselt B, et al.: Interleukin-7 is a critical growth factor in early human T cell development. Blood 1996; 88: 4239–4245.

    PubMed  CAS  Google Scholar 

  29. Crompton T, Outram SV, Buckland J, Owen MJ: A transgenic T cell receptor restores thymocyte differentiation in interleukin-7 receptor a chain-deficient mice. Eur J Immunol 1997; 27: 100–104.

    Article  PubMed  CAS  Google Scholar 

  30. Tepper RI, Levinson DA, Stanger BZ, Campos-Torres J, et al.: IL-4 induces allergic-like inflammatory disease and alters T cell development in transgenic mice. Cell 1990; 62: 457–467.

    Article  PubMed  CAS  Google Scholar 

  31. Muller-Hermelink HK (ed): The Human Thymus: Histophysiology and Pathology. Springer-Verlag, Berlin, Curr Topics in Pathol 1986; 75: 1–268.

    Google Scholar 

  32. Tamaoki N, Habu S, Kameya T: Thymic lymphoid follicles in autoimmune diseases. II. Histological, histochemical, and electron microscopic studies. Keio J Med 1997; 20: 57–68.

    Google Scholar 

  33. von Gaudecker Brita: Die fortschreitende erweiterung mesodermaler pervaskularer raume im thymus des menschen. Verh Anat Ges 71, S. 1977; 71: 783–787.

    Google Scholar 

  34. von Gaudecker Brita: Ultrastructure of the age-involuted adult hunan thymus. Cell Tiss Res 1978; 186: 507–525.

    Article  Google Scholar 

  35. Muller-Hermelink HK, Steinmann G, Stein H: Structural and functional alterations of the aging human thymus. Adv Exp Med Biol 1982;149:303–312.

    PubMed  CAS  Google Scholar 

  36. Bofill M, Janossy G, Willcox N, Chilosi M, et. al.: Microenvironments in the normal thymus and the thymus in myasthenia gravis. Am J Pathol 1985; 119: 462–273.

    PubMed  CAS  Google Scholar 

  37. Steinmann GG, Klaus B, Muller-Hermelin HK: The involution of the aging human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol, 1985; 22: 563–575.

    Article  PubMed  CAS  Google Scholar 

  38. Steinmann GG: Changes in the human thymus during aging. Curr Topics in Pathol 1986;75:43–88.

    CAS  Google Scholar 

  39. Bertho J-M, Demarquay C, Moulian N, Meeren A, et. al.: Phenotypic and immunohistological analysis of the human adult thymus: Evidence for an active thymus during adult life. Cellular Immunol 1997; 179:3–40.

    Article  Google Scholar 

  40. Smith SM, Ossa-Gomez LJ: A quantitative histologic comparison of the thymus in 100 healthy and diseased adults. Am J Clin Pathol 1981;76: 657–665.

    PubMed  CAS  Google Scholar 

  41. Clarke AG, MacLennan KA: The many facets of thymic involution. Immunol Today 1986; 7:204–205.

    Article  Google Scholar 

  42. George AJT, Ritter MA: Thymic involution with aging: Obsolescence or good housekeeping? Immunol Today 1996; 17: 267–272.

    Article  PubMed  CAS  Google Scholar 

  43. Clement LT, Vink PE, Bradley GE: Novel immunoregulatory functions of phenotypically distinct subpopulations of CD4+ cells in the human neonate. J Immunol 1990: 145: 102.

    PubMed  CAS  Google Scholar 

  44. Bell EB, Sparshott SM: Intercon-version of CD45R subsets of CD4 T cells in vivo. Nature 1990; 348: 163–166.

    Article  PubMed  CAS  Google Scholar 

  45. Hargreaves M, Bell EB: Identical expression of CD45R isoforms by CD45RC+ “revenant” memory and CD45RC+ naive CD4 T cells. Immunology 1997; 91: 323–330.

    Article  PubMed  CAS  Google Scholar 

  46. Richards D, Chapman MD, Sasama J, Lee TH, Kemeny DM: Immune memory in CD4+ CD45RA+ T cells. Immunology 1997; 91: 331–339.

    Article  PubMed  CAS  Google Scholar 

  47. Kong F-K, Chen C-I H, Cooper MD: Thymic function can be accurately monitored by the level of recent T cell emigrants in the circulation. Immunity 1998; 9: 97–104.

    Article  Google Scholar 

  48. Wekerle H, Muller-Hermelink HK: The thymus in myasthenia gravis. H.K. Curr. Topics in Pathol 1986; 75: 179–206.

    CAS  Google Scholar 

  49. Castleman B: The pathology of the thymus gland in myasthenia gravis. Am NY Acad Sci. 1966; 135: 496–503.

    Article  CAS  Google Scholar 

  50. Soderstrom N, Axelsson JA, Hagelqvist E: Post capillary venules of the lymph node type in the thymus in myasthenia. Lab Invest 1970; 23: 451–548.

    PubMed  CAS  Google Scholar 

  51. Dunn-Walter D, Howe CJ, Isaacson PG, Spencer J: Location and sequence of rearranged immunoglobulin genes in human thymus. Eur J Immunol 1995; 25: 513–519.

    Article  Google Scholar 

  52. Drenckhahn D, von Gaudecker B, Muller-Hermelink HK, Unsicker K, Groschel-Stewart U: Myosin and actin containing cells in the human postnatal thymus. Ultrastructural and immunohistochemical findings in normal thymus in normal thymus and in myasthenia gravis. Virchows Arch Cell Pathol. 1979; 32: 33–45.

    CAS  Google Scholar 

  53. Haynes BF, Pantaleo G, Fauci AS: Toward an understanding of the correlates of protective immunity to HIV infection. Science 1996; 271:324–328.

    Article  PubMed  CAS  Google Scholar 

  54. Autran B, Carcelain G, Li TS, et al.: Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 1997;277:112–116.

    Article  PubMed  CAS  Google Scholar 

  55. Connors M, Kovacs JA, Krevat S, et al.: HIV infection induces changes in CD4+ T cell phenotype and depletions within the CD4+ T cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nature Med 1997;3:533–540.

    Article  PubMed  CAS  Google Scholar 

  56. Hammer S, Squires K, Hughes M, et. al.: A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N Engl J Med 1997:337:725–733.

    Article  PubMed  CAS  Google Scholar 

  57. Seemayer TA, Loroche C, Russo P, Malebranceh R, et al.: Precocious thymic involution manifest by epithelial injury in the acquired immune deficiency syndrome. Hum Pathol 1984:15:469–474.

    Article  PubMed  CAS  Google Scholar 

  58. Joshi VV, Oleske JM, Binnefor AB, Singh R, et al.: Pathology of suspected acquired immune deficiency syndrome in children: A study of eight cases. Pediat Pathol 1984;2:71–87.

    Article  CAS  Google Scholar 

  59. Grody WW, Fligiel S, Naeim F: Thymus involution in the acquired immunodeficiency syndrome. Am J Clin Pathol 1985;84:85–95.

    PubMed  CAS  Google Scholar 

  60. Joshi VV, Oleske JM: Pathologic appraisal of the thymus gland in acquired immunodeficiency syndrome in children. Arch Pathol Lab Med 1985:109:142–146.

    PubMed  CAS  Google Scholar 

  61. Schuurman H-J, Krone WJA, Broekhuizen R, van Baarlen J, et al.: The thymus in acquired immune deficienc syndrome. Am J Pathol 1989;134:1329–1338.

    PubMed  CAS  Google Scholar 

  62. Muller JG, Krenn V, Schindler C, Czub S, Stahl-Henning C, et al.: Alterations of thymus cortical epithelium and interdigitating dendritic cells but no increase of thymocyte cell death in the early course of simian immunodeficiency virus infection. Am J Pathol 1993:143:669–713.

    Google Scholar 

  63. PrevotS, AudouinJ, Andre-Bougaran J, Griffais R, et al.: Thymic pseudotumorous enlargement due to follicular hyperplasia in a human immunodeficiency virus seropositive patient. Am J Clin Pathol 1992:97:420–425.

    PubMed  CAS  Google Scholar 

  64. Burke AP, Anderson D, Benson W, Turnicky R, Mannan P, et al.: Localization of human immunodeficiency virus 1 RNA in thymic tissues from asymptomatic drug addicts. Arch Pathol Lab Med 1995:119:36–41.

    PubMed  CAS  Google Scholar 

  65. Tenner-Racz K, Racz P, Thome C, Meyer CG, Anderson PJ, Schlossman SF, Letvin NL: Cytotoxic effector cell granules recognized by monoclonal antibody TIA-1 are present in CD8+ lymphocytes in lymph nodes of human immunodeficiency virus-1 infected patients. Amer J Pathol 1993:142:1750–1758.

    CAS  Google Scholar 

  66. Gorochov G, Neumann AU, Kereveur A, Parizot C, et al.: Perturbation of CD4+ and CD8+ T cell repertoires during progression to AIDS and regulation of the CD4+ repertoire during antiviral therapy. Nature Med. 1998;4:215–221.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang ZQ, Notermans DW, Sedgewick G, Cavert W, et al.: Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection. Proc Natl Acad Sci USA 1998; in press.

  68. Kourtis AP, Ibegbu C, Nahmias AJ, Lee FK, et al.: Early progression of disease in HIV-infected infants with thymus dysfunction. N Eng J Med 1996;335:1431–1436.

    Article  CAS  Google Scholar 

  69. Rosenzweig M, Clark DP, Gaulton GN: Selective thymocyte depletion in neonatal HIV-1 thymic infection. AIDS 1993:7:1601–1605.

    Article  PubMed  CAS  Google Scholar 

  70. Papiernik M, Brossard Y, Mulliez N, Roume J, Brechot C, et al.: Thymic abnormalities in fetuses aborted from human immunodeficiency virus Type 1 seropositive women. Pediatrics 1992;89:297–301.

    PubMed  CAS  Google Scholar 

  71. Shen MM, Skoda RC, Carrdiff RD, Campos-Torres J, et al.: Expression of LIF in transgenic mice results in altered thymic epithelium and apparent interconversion of thymic and lymph node morphologies. EMBO J 1994; 13:1375–1385.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barton F. Haynes.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02788778.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, B.F., Hale, L.P. The human thymus. Immunol Res 18, 61–78 (1998). https://doi.org/10.1007/BF02788750

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788750

Key Words

Navigation