Skip to main content
Log in

Hilbert’s irreducibility theorem for prime degree and general polynomials

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Letf (X, t)εℚ[X, t] be an irreducible polynomial. Hilbert’s irreducibility theorem asserts that there are infinitely manyt 0εℤ such thatf (X, t 0) is still irreducible. We say thatf (X, t) isgeneral if the Galois group off (X, t) over ℚ(t) is the symmetric group in its natural action. We show that if the degree off with respect toX is a prime ≠ 5 or iff is general of degree ≠ 5, thenf (X, t 0) is irreducible for all but finitely manyt 0εℤ unless the curve given byf (X, t)=0 has infinitely many points (x 0,t 0) withx 0εℚ,t 0εℤ. The proof makes use of Siegel’s theorem about integral points on algebraic curves, and classical results about finite groups, going back to Burnside, Schur, Wielandt, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Bilu,A note on universal Hilbert sets, Journal für die reine und angewandte Mathematik479 (1996), 195–203.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Dèbes and M. Fried,Integral specialization of families of rational functions, preprint.

  3. J. D. Dixon and B. Mortimer,Permutation Groups, Springer-Verlag, New York, 1996.

    MATH  Google Scholar 

  4. P. Dèbes and U. Zannier,Universal Hilbert subsets, Mathematical Proceedings of the Cambridge Philosophical Society124 (1998), 127–134.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Fried,On Hilbert’s irreducibility theorem, Journal of Number Theory6 (1974), 211–231.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Fried,Review of Serre’s ‘Topics in Galois Theory’, Bulletin of the American Mathematical Society (New Series)30(1) (1994), 124–135.

    MathSciNet  Google Scholar 

  7. M. Fried,Extension of constants, rigidity, and the Chowla-Zassenhaus conjecture, Finite Fields and their Application1 (1995), 326–359.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Gorenstein,Finite Groups, Harper and Row, New York-Evanston-London, 1968.

    MATH  Google Scholar 

  9. B. Huppert and N. Blackburn,Finite Groups III, Springer-Verlag, Berlin-Heidelberg, 1982.

    MATH  Google Scholar 

  10. B. Huppert,Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg, 1967.

    MATH  Google Scholar 

  11. S. Lang,Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  12. P. Müller,Reducibility behavior of polynomials with varying coefficients, Israel Journal of Mathematics94 (1996), 59–91.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. M. Neumann,Transitive permutation groups of prime degree, Journal of the London Mathematical Society (2)5 (1972), 202–208.

    Article  MATH  Google Scholar 

  14. J.-P. Serre,Topics in Galois Theory, Jones and Bartlett, Boston, 1992.

    MATH  Google Scholar 

  15. K. Shih,On the construction of Galois extensions of function fields and number fields, Mathematische Annalen207 (1974), 99–120.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. L. Siegel,Über einige Anwendungen diophantischer Approximationen, Abhandlungen der Preussischen Akademie der Wissenschaften1 (1929), 41–69 (= Gesammelte Abhandlungen I, 209–266).

    Google Scholar 

  17. H. Völklein,Groups as Galois Groups—An Introduction, Cambridge University Press, New York, 1996.

    MATH  Google Scholar 

  18. H. Wielandt,Finite Permutation Groups, Academic Press, New York-London, 1964.

    MATH  Google Scholar 

  19. U. Zannier,Note on dense Hilbert sets, Comptes Rendus de l’Académie des Sciences, Paris, Série I Mathématiques322 (1996), 703–706.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Müller.

Additional information

Supported by the DFG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, P. Hilbert’s irreducibility theorem for prime degree and general polynomials. Isr. J. Math. 109, 319–337 (1999). https://doi.org/10.1007/BF02775041

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02775041

Keywords

Navigation