[1]

M. Abramowitz and I. Stegun,

*Handbook of Mathematical Functions*, Dover, New York, 1972.

MATH[2]

M. Ajtai, J. Komolós and E. Szemerédi,*Deterministic simulation in LOGSPACE*, in*Proceedings of the 19th Annual ACM Symposium on Theory of Computing*, ACM, New York, 1987, pp. 132–140.

[3]

N. Alon, U. Feige, A. Wigderson and D. Zuckerman,*Derandomized graph products*, Computational Complexity, Birkhäuser, Basel, 1995.

[4]

N. Alon, G. Kalai, M. Ricklin and L. Stockmeyer,

*Lower bounds on the competitive ratio for mobile user tracking and distributed job scheduling*, Theoretical Computer Science

**130** (1994), 175–201.

MATHCrossRefMathSciNet[5]

N. Alon, U. Maurer and A. Wigderson, Unpublished results, 1991.

[6]

N. Alon and J. Spencer,

*The Probabilistic Method*, 2nd edn., Wiley, New York, 2000.

MATH[7]

K. Amano and A. Maruoka,*On learning monotone Boolean functions under the uniform distribution*, Lecture Notes in Computer Science**2533**, Springer, New York, 2002, pp. 57–68.

[8]

W. Beckner,

*Ineqalities in Fourier analysis*, Annals of Mathematics

**102** (1975), 159–182.

CrossRefMathSciNet[9]

M. Ben-Or and N. Linial,*Collective coin flipping*, in*Randomness and Computation* (S. Micali, ed.), Academic Press, New York, 1990.

[10]

I. Benjamini, G. Kalai and O Schramm,

*Noise sensitivity of boolean functions and applications to percolation*, Publications Mathématiques de l'Institut des Hautes Études Scientifiques

**90** (1999), 5–43.

MATHCrossRefMathSciNet[11]

S. Bobkov and F. Götze,

*Discrete isoperimetric, and Poincaré-type inequalities*, Probability theory and Related Fields

**114** (1999), 245–277.

MATHCrossRefMathSciNet[12]

A. Bonami,

*Études des coefficients Fourier des fonctiones de L*
^{p} (G), Annales de l'Institut Fourier

**20** (1970), 335–402.

MATHMathSciNet[13]

C. Borell,

*Positivity improving operators and hypercontractivity*, Mathematische Zeitschrift

**180** (1982), 225–234.

MATHCrossRefMathSciNet[14]

J. Bourgain, An appendix to

*Sharp thresholds of graph properties, and the k-sat problem*, by E. Friedgut, Journal of the American Mathematical Society

**12** (1999), 1017–1054.

MATHCrossRefMathSciNet[15]

J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson and N. Linial,

*The influence of variables in product spaces*. Israel Journal of Mathematics

**77** (1992), 55–64.

MATHMathSciNet[16]

J. Bourgain and G. Kalai,

*Influences of variables and threshold intervals under group symmetries*, Geometric and Functional Analysis

**7** (1997), 438–461.

MATHCrossRefMathSciNet[17]

N. Bshouty, J. Jackson and C. Tamon,*Uniform-distribution attribute noise learnability*, in*Proceedings of the Eighth Annual Conference on Computational Learning Theory*, (COLT 1995), Santa Cruz, California, USA, ACM, 1995.

[18]

I. Dinur, V. Guruswami and S. Khot,*Vertex cover on k-uniform hypergraphs is hard to approximate within factor (k-3-∈)*, ECCC Technical Report TRO2-027, 2002.

[19]

I. Dinur and S. Safra,*The importance of being biased*, in*Proceedings of the 34th Annual ACM Symposium on the Theory of Computing*, ACM, New York, 2002, pp. 33–42.

[20]

W. Feller,

*An Introduction to Probability Theory and its Applications*, 3rd edn., Wiley, New York, 1968.

MATH[21]

C. Fortuin, P. Kasteleyn and J. Ginibre,

*Correlation inequalities on some partially ordered sets*, Communications in Mathematical Physics

**22** (1971), 89–103.

MATHCrossRefMathSciNet[22]

E. Friedgut,

*Boolean functions with low average sensivity depend on few coordinates*, Combinatorica

**18** (1998), 474–483.

CrossRefMathSciNet[23]

E. Friedgut and G. Kalai,

*Every monotone graph property has a sharp threshold*, Proceedings of the American Mathematical Society

**124** (1996), 2993–3002.

MATHCrossRefMathSciNet[24]

H. O. Georgii,

*Gibbs Measures and Phase Transitions*, Volume 9 of de Gruyter Studies in Mathematics, de Gruyter, Berlin, 1988.

MATH[25]

G. Hardy, J. Littlewood and G. Póyla,*Inequalities*, 2nd edn., Cambridge University Press, 1952.

[26]

J. H»stad,

*Some optimal inapproximability results*, Journal of the ACM

**48** (2001), 798–869.

CrossRefMathSciNet[27]

J. Kahn, G. Kalai and N. Linial*The influence of variables on boolean functions*, in*Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science*, IEEE Computer Society Press, Los Alamitos, CA, 1988, pp. 68–80.

[28]

S. Khot,*On the power of unique 2-prover 1-round games*, in*Proceedings of the 34th Annual ACM Symposium on the Theory of Computing*, ACM, New York, 2002, pp. 767–775.

[29]

D. Kleitman,

*Families of non-disjoint subsets*, Journal of Combinatorial Theory

**1** (1966), 153–155.

MATHCrossRefMathSciNet[30]

A. Klivans, R. O'Donnell and R. Servedio,

*Learning intersections and thresholds of halfspaces*, in

*Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science*, IEEE Computer Society Press, Los Alamitos, CA, 2002, pp. 177–186.

CrossRef[31]

E. Mossel and R. O'Donnell,

*Coin flipping from a cosmic source: On error correction of truly random bits*, Random Structures & Algorithms

**26** (2005), 418–436.

MATHCrossRefMathSciNet[32]

A. Naor, E. Friedgut and G. Kalai,

*Boolean functions whose Fourier transform is concentrated on the first two levels*, Advances in Applied Mathematics

**29** (2002), 427–437.

MATHCrossRefMathSciNet[33]

R. O'Donnell,*Hardness amplification within* NP, in*Proceedings of the 34th Annual ACM Symposium on the Theory of Computing*, ACM, New York, 2002, pp. 715–760.

[34]

R. O'Donnell,*Computational applications of noise sensitivity*, PhD thesis, Massachusetts Institute of Technology, 2003.

[35]

R. O'Donnell and R. Servedio,*Learning monotone decision trees*, Manuscript, 2004.

[36]

R. Raz,

*Fourier analysis for probabilistic communication complexity*, Computational Complexity

**5** (1995), 205–221.

MATHCrossRefMathSciNet[37]

V. Sazonov,

*Normal Approximation— Some Recent Advances*, Springer-Verlag, Berlin, 1981.

MATH[38]

M. Talagrand,*On Russo's approximate 0–1 law*, Annals of Probability**22** (1994), 1476–1387.

[39]

K. Yang,*On the (im)possibility of non-interactive correlation distillation*, in*LATIN 2004: Theoretical Informatics, 6th Latin American Symposium, Buenos Aires, Argentina, April 5–8, 2004, Proceedings* (M. Farach-Colton, ed.), Lecture Notes in Computer Science 2976, Springer, Berlin, 2004.