Skip to main content
Log in

Frequency-domain fluorescence lifetime imaging for endoscopic clinical cancer photodetection: Apparatus design and preliminary results

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We describe a new fluorescence imaging device for clinical cancer photodetection in hollow organs in which the tumor/normal tissue contrast is derived from the fluorescence lifetime of endogenous or exogenous fluorochromes. This fluorescence lifetime contrast gives information about the physicochemical properties of the environment which are different between normal and certain diseased tissues. The excitation light from a CW laser is modulated in amplitude at a radio frequency by an electrooptical modulator and delivered by an optical fiber through an endoscope to the hollow organ. The image of the tissue collected by the endoscope is separated in two spectral windows, one being the backscattered excitation light and the other the fluorescence of the fluorochrome. Each image is then focused on the photocathode of image intensifiers (II) whose optical gain is modulated at the same frequency as the excitation intensity, resulting in homodyne phase-sensitive images. By acquiring stationary phase-sensitive frames at different phases between the excitation and the detection, it is possible to calculate in quasi-real time the apparent fluorescence lifetime of the corresponding tissue region for each pixel. A result obtained by investigating the endogenous fluorochromes present in the mucous membrane of an excised human bladder is presented to illustrate this method and most of the optical parameters which are of major importance for this photodetection modality have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Norwell (1986)Cancer Res. 46, 2203–2207.

    Google Scholar 

  2. R. Pasche, M. Savary, and Ph. Monnier (1981)Acta Endosc. 11, 9277–291.

    Google Scholar 

  3. T. Muto, J. R. Buessey, and B. C. Morson (1975)Cancer 36, 2251–2270.

    Article  PubMed  CAS  Google Scholar 

  4. S. Undenfriend (1962)Fluorescence Assay in Biology and Medicine, Vol. I, Academic Press, New York.

    Google Scholar 

  5. G. M. Brenboin, A. N. Domanskii, and K. K. Turoverov (1969)Luminescence of Biopolymers in Cells, Plenum Press, New York.

    Google Scholar 

  6. R. R. Alfano, D. B. Tata, J. J. Cordero,et al. (1984)IEEE J. Quant. Electr. 20, 1507–1511.

    Article  Google Scholar 

  7. W. Lohmann (1988)Naturwissenschaften 75, 201–202.

    Article  PubMed  CAS  Google Scholar 

  8. Y. Yuanlong, Y. Yanmin, L. Furning,et al. (1987)Lasers Surg. Med. 7, 528–532.

    Article  Google Scholar 

  9. D. Braichotte, G. Wagnières, Ph. Monnier,et al. (1991)SPIE 1525, 211–218.

    Google Scholar 

  10. R. R. Alfano, A. Pradhan, and G. C. Tang (1989)J. Opt. Soc. Am. B 6(5), 1015–1023.

    Article  CAS  Google Scholar 

  11. P. N. Yashke, R. F. Bonner, P. Cohen,et al. (1989)Gastrointest. Endosc. 35, 184.

    Google Scholar 

  12. R. Marchesini, M. Brambilla, E. Pigoli,et al. (1992)J. Photochem. Photobiol. B Biol. 14, 219–230.

    Article  CAS  Google Scholar 

  13. K. T. Schomacker, J. K. Frisoli, C. C. Compton,et al. (1992)Lasers Surg. Med. 12, 63–78.

    Article  PubMed  CAS  Google Scholar 

  14. W. S. Poon, K. T. Schomaker, T. F. Deutsch,et al. (1992)J. Neurosurg. 76, 679–686.

    PubMed  CAS  Google Scholar 

  15. R. Richards-Kortum, R. P. Rava, R. E. Petras,et al. (1991)Photochem. Photobiol. 53, 777–786.

    PubMed  CAS  Google Scholar 

  16. R. C. Benson, G. M. Farrow, J. H. Kinsey,et al. (1982)Mayo Clin. Proc. 57, 548–555.

    PubMed  CAS  Google Scholar 

  17. G. Wagnières, Ch. Depeursinge, Ph. Monnier,et al. (1990)SP1E 1203, 43–52.

    Google Scholar 

  18. A. E. Profio, O. J. Balchum, and F. Cartens (1986)Med. Phys. 13, 717–721.

    Article  PubMed  CAS  Google Scholar 

  19. T. Hirano, M. Ishizuka, K. Suzuki,et al. (1989)Lasers Life Sci. 3(2), 99–116.

    Google Scholar 

  20. R. Baumgartner, H. Fisslinger, D. Jocham,et al. (1987)Photochem. Photobiol. 46(5), 759–763.

    PubMed  CAS  Google Scholar 

  21. S. Montan, K. Svanberg, and S. Svanberg (1985)Opt. Lett. 10, 56–58.

    CAS  PubMed  Google Scholar 

  22. G. Wagnières, D. Braichotte, A. Chatelain,et al. (1991)SPIE 1525, 219–236.

    Article  Google Scholar 

  23. Ph. Monnier, M. Savary, Ch. Fontolliet,et al. (1990)Lasers Med. Sci. 5, 149–169.

    Article  Google Scholar 

  24. J. C. Kennedy and R. H. Pottier (1992)J. Photochem. Photobiol. 14, 275–292.

    Article  CAS  Google Scholar 

  25. M. Forrer, Th. Glanzmann, J. Mizeret,et al. (1995)SPIE 2324, 84–88.

    Article  Google Scholar 

  26. P. Jichlinski, H.-J. Leisinger, M. Forrer,et al. (1997)Lasers Surg. Med. (in press).

  27. M. Kriegmair, R. Baumgartner, R. Knuechel,et al. (1994)Urology 44(6), 836–841.

    Article  PubMed  CAS  Google Scholar 

  28. D. Braichotte, J.-F. Savary, G. Wagnières,et al. (1994)SPIE 2081, 62–73.

    Article  Google Scholar 

  29. S. Folli, G. Wagnières, A. Pèlegrin,et al. (1992)Proc. Natl. Acad. Sci. USA 89, 7973–7977.

    Article  PubMed  CAS  Google Scholar 

  30. S. Mordon, V. Maunoury, J.-M. Devoiselle,et al. (1992)J. Photochem. Photobiol. B Biol. 13, 307–314.

    Article  CAS  Google Scholar 

  31. H. S. Rye, S. Yue, D. E. Wemmer,et al. (1992)Nucleic Acids Res. 20, 2803–2812.

    Article  PubMed  CAS  Google Scholar 

  32. P. Herlin, J. Marnay, J. H. Jacob,et al. (1983)Endoscopy 15, 4–7.

    PubMed  CAS  Google Scholar 

  33. O. Kocher, M. Amaudruz, A. M. Schindler,et al. (1981)J. Submicrosc. Cytol. 13, 267–281.

    PubMed  CAS  Google Scholar 

  34. L. Massaad, I. de Waziers, V. Ribrag,et al. (1993)Bull. Cancer 80(5), 397–407.

    PubMed  CAS  Google Scholar 

  35. G. Weber (1976)Advances in Enzyme Regulation, Vol. 15, Pergamon Press, New York.

    Google Scholar 

  36. S. F. Wang, S. Kitajima, T. Uchida,et al. (1990)Appl. Spectrosc. 44(1), 25–30.

    Article  CAS  Google Scholar 

  37. W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson (1988)Science 241, 1649–1651.

    Article  PubMed  CAS  Google Scholar 

  38. M. Kohl, U. Sukowski, and B. Ebert (1993)SPIE 1881, 206–221.

    Article  Google Scholar 

  39. J. R. Lakowicz and K. W. Berndt (1991)Rev. Sci. Instrum. 62(7), 1727–1734.

    Article  CAS  Google Scholar 

  40. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk,et al. (1992)Anal. Biochem. 202, 316–330.

    Article  PubMed  CAS  Google Scholar 

  41. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk,et al. (1992)Proc. Natl. Acad. Sci. USA 89, 1271–1275.

    Article  PubMed  CAS  Google Scholar 

  42. D. E. Pearson (1975)Transmission and Display of Pictorial Information, Pentech, London.

    Google Scholar 

  43. F. W. D. Rost (1991)Quantitative Fluorescence Microscopy, Cambridge University Press, Cambridge.

    Google Scholar 

  44. J. Mizeret, G. Wagnières, A. Studzinski,et al. (1995)SPIE 2627, 40–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagnières, G., Mizeret, J., Studzinski, A. et al. Frequency-domain fluorescence lifetime imaging for endoscopic clinical cancer photodetection: Apparatus design and preliminary results. J Fluoresc 7, 75–83 (1997). https://doi.org/10.1007/BF02764580

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764580

Key Words

Navigation