Skip to main content
Log in

Intergrowth structures in inorganic solids: A new class of materials

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

An increasing number of inorganic solids forming long-period structures due to recurrent intergrowth of two chemically distinct but structurally related units are getting to be known in recent years. These novel structures have given rise to new chemistry at solid-solid interfaces. Besides intergrowth structures with long-range order, many solids with random intergrowth (similar to stacking faults in polytypes) are known. Ordered integrowth gives rise to homologous series of structures in many systems. Barium ferrites, the Aurivillius family of oxides and other perovskite-related oxides, siliconiobates, and tungsten oxide bronzes are some of the systems exhibiting ordered intergrowth structures. Both ordered and disordered intergrowths are fruitfully investigated by high resolution electron microscopy. The main emphasis in this article is on intergrowth structures where the component units are compositionally different. These systems are obviously most fascinating since compositional change occurs across each interface (intergrowth plane), unlike in polytypic materials where the composition remains constant. Even in ordered intergrowth structures, there is always some disorder. If order in an intergrowth structure does not prevail over large distances, but occurs only over shorter stretches (say, a few repeats of the sequence), it becomes difficult to describe the solid except in terms of the gross composition and where possible, the unit cell dimensions. Structures with occasional intergrowths are found in a variety of materials such asβ-alumina, Magnéli phases, silicates, ferrites and several other oxide systems. In addition to examining the structural features of various intergrowths, the origin of the intergrowth phenomenon is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alario-Franco M A, Joubert J C and Levy J P 1982Mater. Res. Bull. 17 733.

    Article  CAS  Google Scholar 

  • Alario-Franco M A, Henche M J R, Vallet M, Calbet J M G, Grenier J C, Wattiaux A and Hagenmuller P 1983aJ. Solid State Chem. 46 23

    Article  CAS  Google Scholar 

  • Alario-Franco M A, Calbet J M G, Regi M V and Grenier J C 1983bJ. Solid State Chem. 49 219

    Article  CAS  Google Scholar 

  • Anderson J S 1973J. Chem. Soc. Dalton Trans. 1107

  • Anderson J S, Browne J M and Hutchison J L 1972Nature 237 5351

    Google Scholar 

  • Anderson J S and Hutchison J L 1975Contemp. Phys. 16 443

    Article  CAS  Google Scholar 

  • Anderson J S and Tilley R J D 1974 inSurface and defect properties of solids (eds) M W Roberts and J M Thomas, Vol. 3, Specialist Periodic Report (London: The Chemical Society)

    Google Scholar 

  • Aurivillius B 1950Ark. Kemi. 2 519

    CAS  Google Scholar 

  • Benmoussa A, Groult D, Studer F and Raveau B 1982aJ. Solid State Chem. 41 221

    Article  CAS  Google Scholar 

  • Benmoussa A, Labbe Ph, Groult D and Raveau B 1982bJ. Solid State Chem. 44 318

    Article  CAS  Google Scholar 

  • Calbet J M G, Jefferson D A, Drennan J and Spurdens P C 1981Mater. Res. Bull. 16 1107

    Article  Google Scholar 

  • Carpy A and Portier R 1974C. R. Acad. Sci. Ser. C 279 691

    CAS  Google Scholar 

  • Catlow C R A and James R 1980 inChemical physics of solids and their surfaces, (eds) M W Roberts and J M Thomas, Vol. 8, Specialist Periodic Report (London: The Chemical Society)

    Google Scholar 

  • Chailleux J M, Groult D and Raveau B 1978Ann. Chim. (France) 3 251

    CAS  Google Scholar 

  • Eckstrom T and Tilley R J D 1980Chem. Scr. 16 1

    Google Scholar 

  • Frank F C 1951Philos. Mag. 42 809, 1014

    CAS  Google Scholar 

  • Ganapathi L, Subbanna G N, Gopalakrishnan J and Rao C N R 1985J. Mater. Sci. 20 1105

    Article  CAS  Google Scholar 

  • Gopalakrishnan J, Ramanan A, Rao C N R, Jefferson D A and Smith D J 1984J. Solid State Chem. 55 101

    Article  CAS  Google Scholar 

  • Groult J P, Goreaud M, Labbe Ph and Raveau B 1982J. Solid State Chem. 44 407

    Article  Google Scholar 

  • Hervieu M and Raveau B 1982J. Solid State Chem. 43 299

    Article  CAS  Google Scholar 

  • Hervieu M, Studer F and Raveau B 1980Phys. Status Solidi A60 237

    Google Scholar 

  • Hirotsu Y, Tsumashima Y, Nagakura S, Kuwamoto H and Sato H 1982J. Solid State Chem. 43 33

    Article  CAS  Google Scholar 

  • Horiuchi S, Muramatsu K and Shimazu M 1980J. Solid State Chem. 34 51

    Article  CAS  Google Scholar 

  • Hussain A and Kihlborg L 1976Acta Cryst. A32 551

    CAS  Google Scholar 

  • Hutchison J L, Anderson J S and Rao C N R 1977aProc. R. Soc. London A355 301

    Google Scholar 

  • Hutchison J L, Jefferson D A and Thomas J M 1977b inSurface and defect properties of solids (eds) M W Roberts and J M Thomas, Vol. 6. Specialist Periodic Report (London: The Chemical Society)

    Google Scholar 

  • Iguchi E and Tilley R J D 1977Philos. Trans. Soc. A286 55

    Article  Google Scholar 

  • Jefferson D A, Uppal M K, Rao C N R and Smith D J 1984Mater. Res. Bull. 19 1403

    Article  CAS  Google Scholar 

  • Kihlborg L 1978Chem. Scr. 14 187

    Google Scholar 

  • Kihlborg L (ed.) 1979Direct imaging of atoms in crystals and molecules, Nobel Symposium 47, Royal Swedish Academy of Sciences

  • Kihlborg L and Sharma R 1982J. Microsc. Spectrosc. Electron 7 387

    CAS  Google Scholar 

  • Kikuchi T 1977J. Less-Common Met. 52 163

    Article  CAS  Google Scholar 

  • Kikuchi T 1979Mater. Res. Bull. 14 1561

    Article  CAS  Google Scholar 

  • Kittel C 1978Solid State Commun. 25 519

    Article  CAS  Google Scholar 

  • Kohn J A and Eckart D W 1964J. Appl. Phys. 35 968

    Article  CAS  Google Scholar 

  • Kohn J A and Eckart D W 1967Mater. Res. Bull. 2 55

    Article  CAS  Google Scholar 

  • Kohn J A, Eckart D W and Cook C F 1971Science 172 519

    Article  CAS  Google Scholar 

  • Mathews J W (ed.) 1975Epitaxial growth (New York: Academic Press)

    Google Scholar 

  • McConnell J D M, Hutchison J L and Anderson J S 1974Proc. R. Soc. London A339 1

    Google Scholar 

  • Millward G R, Ramdas S, Thomas J M and Barlow M T 1983J. Chem. Soc. Faraday Trans. 279 1075

    CAS  Google Scholar 

  • Mohan Ram R A, Ganapathi L, Ganguly P and Rao C N R 1985J. Solid State Chem. (In print)

  • Nanot M, Queyroux F, Gilles J C, Carpy A and Galy J 1974J. Solid State Chem. 11 272

    Article  CAS  Google Scholar 

  • Nguyen N, Studer F, Groult D, Choisnet J and Raveau B 1976J. Solid State Chem. 19 369

    Article  Google Scholar 

  • Portier R, Carpy A, Fayard M and Galy J 1975Phys. Status Solidi A30 683

    Google Scholar 

  • Ramanan A, GOpalakrishnan J, Uppal M K, Jefferson D A and Rao C N R 1984Proc. R. Soc. London A395 127

    Google Scholar 

  • Ramasesha S and Rao C N R 1977Philos. Mag. 34 827

    Article  Google Scholar 

  • Rao C N R 1982Chem. Scr. 19 124

    CAS  Google Scholar 

  • Rao C N R 1983 Sir C V Raman Lecture, Indian Institute of Science, Bangalore

    Google Scholar 

  • Rao C N R 1984aSolid state chemistry: a perspective Golden Jubilee Publication, Indian National Science Academy

  • Rao C N R 1984bAccts. Chem. Res. 17 83

    Article  CAS  Google Scholar 

  • Rao C N R, Gopalakrishnan J and Vidyasagar K 1984Indian J. Chem. A23 265

    Google Scholar 

  • Rao C N R and Rao K J 1978Phase transitions in solids (New York: McGraw Hill)

    Google Scholar 

  • Rao C N R and Thomas J M 1985Accts. Chem. Res. 18 113

    Article  CAS  Google Scholar 

  • Reller A, Thomas J M, Jefferson D A and Uppal M K 1984Proc. R. Soc. London A394 223

    Google Scholar 

  • Sato H, Toth R S and Honjo G 1967J. Phys. Chem. Solids 28 137

    Article  CAS  Google Scholar 

  • Stoneham A M and Durham P J 1973J. Phys. Chem. Solids 34 2127

    Article  CAS  Google Scholar 

  • Studer F and Raveau B 1978Phys. Status Solidi A48 301

    Google Scholar 

  • Thomas J M and Jefferson D A 1978Endeavour 2 127

    Article  CAS  Google Scholar 

  • Thomas J M, Jefferson D A and Millward G R 1982J. Microsc. Spectrosc. Electron 7 315

    CAS  Google Scholar 

  • Tilley R J D 1977J. Solid State Chem. 21 293

    Article  CAS  Google Scholar 

  • Tilley R J D 1980 inChemical physics of solids and surfaces (eds) M W Roberts and J M Thomas, Vol. 8, Specialist Periodic Report (London: The Royal Society of Chemistry)

    Google Scholar 

  • Uppal M K, Ramasesha S and Rao C N R 1980Acta Cryst. A36 356

    CAS  Google Scholar 

  • Van Landuyt J, Amelinekx S, Kohn J A and Eckart D W 1974J. Solid State Chem. 9 103

    Article  Google Scholar 

  • Van Tendeloo G, Van Dyek D, Van Landuyt J and Amelinekx S 1979J. Solid State Chem. 27 55

    Article  Google Scholar 

  • Veblen D R and Buseck P R 1979Science 206 1398

    Article  CAS  Google Scholar 

  • Veblen D R, Buseck P R and Burnham C W 1977Science 198 359

    Article  CAS  Google Scholar 

  • Verma P and Krishna P 1966Polymorphism and polytypism (New York: John Wiley)

    Google Scholar 

  • Vidyasagar K, Ganapathi L, Gopalakrishnan J and Rao C N R 1985J. Chem. Soc. Chem. Commun. (in print)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 312 from the Solid State and Structural Chemistry Unit, dedicated to the memory of Dr. N S Satya Murthy of the Bhabha Atomic Research Centre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, C.N.R. Intergrowth structures in inorganic solids: A new class of materials. Bull. Mater. Sci. 7, 155–178 (1985). https://doi.org/10.1007/BF02747572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02747572

Keywords

Navigation