Skip to main content
Log in

Potential scattering for complex energy and angular momentum

Il Nuovo Cimento (1955-1965)

Summary

The analytic properties of the partial wave scattering amplitude for potential scattering in the pair of variablesk (wave number) andλ=l+1/2 have been derived when both variables are complex. Several results on the location of the poles of theS-matrix follow from a procedure of analytic completion. The scattering process is then considered as described by the variablesλ andk, instead ofs andt, as in Mandelstam work. The set of properties ofS(λ,k)=exp [2(λ,k)] here derived is exactly equivalent to the double dispersion formulas for energy and momentum transfer.

Riassunto

Vengono ricavate le proprietà analitiche dell’ampiezza di diffusione in onde parziali, per diffusione da potenziale, quando le variabilik (numero d’onda) eλ=l+1/2 sono simultaneamente complesse. Alcuni risultati sulla posizione dei poli della matriceS derivano da un procedimento di completamento analitico. Le proprietà qui derivate della matriceS sono esattamente equivalenti alle formule di dispersione doppie dell’ampiezza di diffusione nell’energia e nel momento trasferito.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Regge:Nuovo Cimento,14, 951 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  2. This had not been achieved in (1,2) because there we assumed from the beginning the validity of ordinary dispersion relations, as it follows from the earlier work ofKhuri and others (3).

  3. T. Regge:Nuovo Cimento,18, 947 (1960).

    Article  MathSciNet  Google Scholar 

  4. R. Blankenbecler, M. L. Goldberger, N. N. Khuri andS. B. Treiman:Ann. of Phys.,10, 62 (1960);N. N. Khuri:Phys. Rev.,107, 1148 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A. Klein:Journ. Math. Phys.,1, 41 (1960).

    Article  ADS  MATH  Google Scholar 

  6. This is identity (1.8) of paper (1). The functionsC(λ) andS(λ) are linear combinations of Jost functions.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Sommerfeld:Partielle Differential-Gleichungen der Physik (Leipzig, 1947), p. 285.

  8. M. L. Cartwright:Integral Functions (1956), p. 28.

  9. E. C. Kemble:Phys. Rev.,48, 549 (1935). See alsoE. C. Kemble:Fundamentals Principles of Quantum Mechanics (1937).

    Article  ADS  Google Scholar 

  10. In (1) we used the notations=zp. The formula we gave there forJ(z) is misprinted and the reader should refer to this paper in order to avoid this and other misprints which unfortunately occurred in (1).

    Article  MathSciNet  Google Scholar 

  11. In (3)R. Blankenbecler, M. L. Goldberger, N. N. Khuri andS. B. Treiman:Ann. of Phys.,10, 62 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Recently we have found a paper (8) where the name « spiralling states » has been adopted.

    Article  MathSciNet  ADS  Google Scholar 

  13. K. W. Ford andJ. A. Wheeler:Ann. of Phys.,7, 259 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A more complete investigation on this subject has been carried out in a forthcoming paper by two of us (A.B.-A.M.L.): Holomorphy domain of theS-matrix in potential scattering (submitted toNuovo Cimento).

  15. We are indebted to Prof.R. Ascoli for very interesting discussions on this matter and to Prof.V. Glaser for his kind permission to use his results in this paper.

  16. An accurate discussion about poles in the case of complex values ofk (λ real) has been carried out byR. G. Newton (9).

    Article  ADS  MATH  Google Scholar 

  17. R. G. Newton:Journ. Math. Phys.,1, 319 (1960).

    Article  ADS  MATH  Google Scholar 

  18. This property off(E, cosθ) is true only for potentials which are of the Yukawa type. In (2–4) are reported proofs which are essentially based on the perturbative expansion of the scattering amplitude in momentum space. In (1) this analyticity is derived with the help of the present W.K.B. approximation and of the Watson transform (2.13). This proof is the one reported here.

    Article  MathSciNet  MATH  Google Scholar 

  19. For a complete discussion of this point, see Lectures deliverel by one of us (T.R.) at the Summer School on High Energy Physics, in Hercegnovi, Yugoslavia (1961).

  20. Higher Trascendental Functions (Bateman Project Staff), vol.2 (1953), p. 46

  21. E. C. Titchmarsch:Eigenfunctions Expansions, vol.1 (1946), p. 97.

    ADS  Google Scholar 

  22. Bateman Project Staff:Higher Trascendental Functions, vol.2 (1953), p. 21, eq. (30).

  23. Bateman Project Staff:Higher Trascendental Functions, vol.2 (1953), p. 14, eq. (3).

  24. Bateman Project Staff:Higher Trascendental Functions, vol.2 (1953), p. 21, eq. (27).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottino, A., Longoni, A.M. & Regge, T. Potential scattering for complex energy and angular momentum. Nuovo Cim 23, 954–1004 (1962). https://doi.org/10.1007/BF02731254

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02731254

Navigation