1.

A. Ya. Aleksandrov, “Representation of the components of the three-dimensional axisymmetric state of a transversally isotropic body using functions of complex variable and contour integrals,”

*Izv. Akad. Nauk SSSR Mekh. Mashinostr.*, No. 2, 149–152 (1969).

Google Scholar2.

A. Ya. Aleksandrov and V. S. Vol'pert, “Solution of three-dimensional problems of the theory of elasticity for a transversally isotropic body using analytical functions,”

*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 5, 82–91 (1967).

Google Scholar3.

A. Ya. Aleksandrov and Yu. I. Solov'ev,

*Three-Dimensional Problems of the Theory of Elasticity* [in Russian], Nauka, Moscow (1978).

Google Scholar4.

K. S. Aleksandrov and T. V. Ryzhova, “The elastic properties of crystals (review),”

*Kristallografiya*,

**6**, No. 2, 289–314 (1961).

Google Scholar5.

E. V. Altukhov, A. S. Kosmodamianskii, and V. A. Shaldyrvan, “The bending of a thick ring plate,”

*Izv. Akad. Nauk Arm. SSR Mekh.*,

**28**, No. 6, 66–72 (1975).

Google Scholar6.

S. A. Ambartsumyan,

*Theory of Anisotropic Plates* [in Russian], Nauka, Moscow (1967).

Google Scholar7.

S. A. Ambartsumyan,

*General Theory of Anisotropic Shells* [in Russian], Nauka, Moscow (1974).

Google Scholar8.

E. K. Ashkenazi,

*Anisotropy of Machine-Building Materials* [in Russian], Mashinostroyeniye, Leningrad (1969).

Google Scholar9.

E. K. Ashkenazi and É. V. Ganov,

*Anisotropy of Structural Materials: A Reference Book* [in Russian], Lesn. Prom., Leningrad (1980).

Google Scholar10.

E. K. Ashkenazi and A. S. Morozov, “A technique for experimental investigation of the elastic properties of composite materials,”

*Zavod. Labor.*, No. 6, 731–735 (1976).

Google Scholar11.

I. Yu. Babich and B. Yu. Nemish, “The axisymmetric stress state of orthotropic cylinders under nonuniform pressure,”*Abstracts of Papers Read at the Voronezh Sch. Modern Problems of Mechanics and Applied Mathematics* [in Russian], Voronezh (1998), p. 29.

12.

I. Yu. Babich and B. Yu. Nemish, “The three-dimensional thermostress state of transversally isotropic composite plates under nonuniform heat,”*Abstracts of Papers Read at Intern. Conf. Dynamical Syst. Model. Stab. Invest.* [in Russian], Kiev (1999), p. 7.

13.

É. N. Bayda, “The general solution of equilibrium equations for anisotropic and isotropic bodies,”

*Izv. Vuzov Str. Arkh.*, No. 6, 17–27 (1958).

Google Scholar14.

É. N. Bayda, “The method of three functions for an anisotropic body,” in:*Sb. Nauchn. Tr. Leningrad. Inzh.-Str. Inst.*, Issue 29 (1958), pp. 17–45.

15.

É. N. Bayda, “Pleonisms in the general solution of the equilibrium equations in displacements for an anisotropic body,”

*Izv. Vuzov Str. Arkh.*, No. 1, 27–37 (1959).

Google Scholar16.

S. A. Batugin and R. K. Nirenburg, “Approximate dependence between the elastic constants of rock. Parameters of anisotropy,”

*Fiz.-Tekh. Probl. Razr. Polezn. Iskop.*,

**7**, No. 1, 7–11 (1972).

Google Scholar17.

Kh. B. Berkinov, “Functions of the stress tensor of an anisotropic elastic body,” in:

*Integration of Some Differential Equations of Mathematical Physics* [in Russian], Nauka, Tashkent (1964), pp. 83–103.

Google Scholar18.

Kh. B. Berkinov and N. M. Sayfullaev, “The tensor of stress functions for an anisotropic elastic body,”

*Dokl. Akad. Nauk Tadzh. SSR*,

**10**, No. 11, 13–15 (1967).

Google Scholar19.

N. M. Bloshko, “The stress state of a transversally isotropic corrugated cylinder of finite dimensions,”

*Prikl. Mekh.*,

**19**, No. 2, 38–43 (1983).

Google Scholar20.

N. M. Bloshko and Yu. N. Nemish, “Elastic equilibrium of transversally isotropic cylinders with perturbed lateral surfaces,”

*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 4, 93–99 (1984).

Google Scholar21.

N. M. Bloshko and Yu. N. Nemish, “The axisymmetric stress state of finite elastic cylinders with grooves of arbitrary shapes,”

*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 6, 53–61 (1988).

Google Scholar22.

Yu. V. Vasilevich and I. A. Prusov, “One method of solution of the first basic problem for an orthotropic half-space,”

*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 2, 66–72 (1989).

Google Scholar23.

Yu. V. Vasilevich and I. A. Prusov, “Stresses and displacements for an elastic orthotropic half-space under a normal load,”

*Teor. Prikl. Mekh.*, No. 3, 56–59 (1989).

Google Scholar24.

B. F. Vlasov, “One case of bending of a rectangular thick plate,”

*Vestnik Moscovskogo Univ. Mat. Mekh.*, No. 2, 25–34 (1957).

MathSciNetGoogle Scholar25.

V. S. Vol'pert, “Solution of the basic problems of the theory of elasticity for a transversally isotropic paraboloid and two-sheet hyperboloid of revolution,” in:*Tr. Novosibirskogo Inst. Zhel.-Dor. Transp.*, Issue 96 (1970), pp. 158–165.

26.

Sh. Kh. Ganev, “The complete solution of the three-dimensional problem of orthotropic continuous media in rectangular coordinates,” in:

*Proc. Inter. Conf. on Continuum Mechanic*, Izd. Bolg. Akad. Nauk, Sofia (1968), pp. 123–134.

Google Scholar27.

V. T. Golovchan,

*Anisotropy of the Physical-Mechanical Properties of Composite Materials* [in Russian], Naukova Dumka, Kiev (1987).

Google Scholar28.

Ya. M. Grigorenko and A. T. Vasilenko,

*Problems of the Statics of Anisotropic Inhomogeneous Shells* [in Russian], Nauka, Moscow (1992).

Google Scholar29.

Ya. M. Grigorenko, A. T. Vasilenko, and N. D. Pankratova,

*The Statics of Anisotropic Thick-Walled Shells* [in Russian], Naukova Dumka, Kiev (1985).

Google Scholar30.

V. T. Grinchenko,

*The Equilibrium and Steady-State Vibrations of Elastic Finite Bodies* [in Russian], Naukova Dumka, Kiev (1978).

Google Scholar31.

A. N. Guz', “Representation of the solutions of three-dimensional axisymmetric problems of the theory of elasticity for a transversally isotropic body,”

*Dop. Akad. Nauk Ukr. SSR*, No. 12, 1592–1595 (1963).

MathSciNetGoogle Scholar32.

A. N. Guz' and Yu. N. Nemish,

*Perturbation Methods in Three-Dimensional Problems of the Theory of Elasticity* [in Russian], Vyshcha Shkola, Kiev (1982).

Google Scholar33.

A. N. Guz' and Yu. N. Nemish,

*The Statics of Elastic Noncanonical Bodies*, Vol. 2 of the six-volume

*Three-Dimensional Problems of the Theory of Elasticity and Plasticity* [in Russian], (A. N. Guz', general editor), Naukova Dumka, Kiev (1984).

Google Scholar34.

V. M. Deev, “Solution of the three-dimensional problem of theory of elasticity for an anisotropic medium,”

*Dop. Akad. Nauk Ukr. SSR*, No. 7, 707–711 (1958).

MathSciNetGoogle Scholar35.

V. M. Deev and N. S. Smirnov, “The general solution in the statics of an elastic medium in the case of curvilinear anisotropy,” in:

*Proc. 8th Sci.-Tech. Conf.*, Izd. Kharkov. Univ., Kharkov (1968), pp. 167–171.

Google Scholar36.

A. A. Dorodnitsyn, “The use of the small-parameter method in the numerical solution of equations of mathematical physics,” in:

*Tr. Vychisl. Tsent. Akad. Nauk SSSR Numerical Solution of Problems of Continuum Mechanics* [in Russian], Izd. Akad. Nauk SSSR, Moscow (1969), pp. 85–100.

Google Scholar37.

M. Yu. Kashtalyan and Yu. N. Nemish, “Solution of three-dimensional boundary-value problems of the statics for orthotropic plates,”

*Dokl. Akad. Nauk Ukr. SSR*, No. 10, 66–70 (1992).

Google Scholar38.

M. Yu. Kashtalyan and Yu. N. Nemish, “The stress-strain state of transversally isotropic constant- and variable-thickness plates bent by localized loads,”

*Prikl. Mekh.*,

**29**, No. 3, 24–31 (1993) (

*Int. Appl. Mech.*,

**29**, No. 3, 189–194 (1993)).

Google Scholar39.

M. Yu. Kashtalyan and Yu. N. Nemish, “The three-dimensional stress-strain state of bent rectangular orthotropic plates of variable thickness,”

*Prikl. Mekh.*,

**30**, No. 12, 39–48 (1994) (

*Int. Appl. Mech.*,

**30**, No. 12, 952–961 (1994)).

Google Scholar40.

I. V. Kim, “On some problems of the theory of elasticity for an orthogonally isotropic half-space,” in:*Sb. Tr. Tashkentskogo Inst. Inzh. Zhel.-Dor. Transp.*, Issue 56 (1968), pp. 51–62.

41.

I. V. Kim, “The static problem for a orthogonally anisotropic elastic cylinder,”

*Dokl. Akad. Nauk Uz. SSR*, No. 10, 3–5 (1968).

Google Scholar42.

I. V. Kim, “Elastic equilibrium of infinite orthotropic space weakened by two elliptic slits,”

*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 2, 74–80 (1972).

Google Scholar43.

S. Clark,

*Handbook of Physical Constants* [Russian translation], Nauka, Moscow (1969).

Google Scholar44.

A. N. Guz', A. S. Kosmodamianskii, and V. P. Shevchenko (eds.),

*Stress Concentration*, Vol. 7 of the 12-volume

*Mechanics of Composites* [in Russian] (A. N. Guz', general editor), A.S.K., Kiev (1998).

Google Scholar45.

A. S. Kosmodamianskii,

*The Stress State of Anisotropic Media with Openings or Cavities* [in Russian], Vyshcha Shkola, Kiev-Donetsk (1976).

Google Scholar46.

A. S. Kosmodamianskii and V. A. Galich, “The general solution of the three-dimensional problem of the theory of elasticity for a laminated orthotropic cylindrical shells,”

*Dokl. Akad. Nauk SSSR, Ser. A*, No. 8, 46–48 (1984).

Google Scholar47.

A. S. Kosmodamianskii and V. A. Shaldyrvan, “Determination of the stress state of multiply connected transtropic plates,”

*Prikl. Mat. Mekh.*,

**39**, No. 5, 909–917 (1975).

Google Scholar48.

A. S. Kosmodamianskii and V. A. Shaldyrvan,

*Thick Multiply Connected Plates* [in Russian], Naukova Dumka, Kiev (1978).

Google Scholar49.

B. M. Koyalovich, “Analysis of infinite systems of linear algebraic equations,”

*Izv. Phys.-Mat. Inst. im. V. A. Steklova*, No. 3, 41–167 (1930).

Google Scholar50.

V. D. Kupradze, T. G. Gegelia, M. O. Basheleyshvili, and T. V. Burchuladze,

*Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity* [in Russian], Nauka, Moscow (1976).

Google Scholar51.

S. G. Lekhnitskii,

*Anisotropic Plates* [in Russian], Gostekhizdat, Moscow (1957).

Google Scholar52.

S. G. Lekhnitskii,

*The Theory of Elasticity of an Anisotropic Body* [in Russian], Nauka, Moscow (1977).

Google Scholar53.

D. F. Lyalyuk, Yu. N. Nemish, and D. I. Chernopiskii, “Elastic equilibrium of thick-walled transversally isotropic nearly spherical shells,” in:

*Proc. 12th All-Union Conf. on the Theory of Shells and Plates*, Vol. 3, Metsniereba, Yerevan (1980). pp. 38–44.

Google Scholar54.

P. Marinov, “Stiffness of a prismatic solid with natural orthotropy under conditions of three-dimensional stress state,”

*Izv. Inst. Mekh.*, No. 4, 133–152 (1967).

Google Scholar55.

P. Marinov, “Stiffness of a simply supported prismatic solid with natural orthotropy,”

*Izv. Inst. Tekh. Mekh.*, No. 4, 153–167 (1967).

Google Scholar56.

Yu. I. Matyash, “The axisymmetric elastic equilibrium of a three-layer crossly corrugated transversally isotropic cylinder,”

*Prikl. Mekh.*,

**19**, No. 6, 39–46 (1983).

Google Scholar57.

A. N. Guz' and S. D. Akbarov,

*Mechanics of Materials with Curved Structures*, Vol. 4 of the 12-volume

*Mechanics of Composites* [in Russian] (A. N. Guz', general editor), Naukova Dumka, Kiev (1995).

Google Scholar58.

Z. Mossakowska, “Stress functions for elastic bodies possessing triaxial orthotropy,”

*Bull. Acad. Polon. Sci, Otd. 4*,

**3**, No. 1, 3–6 (1955).

Google Scholar59.

Z. Mossakowska, “Stress functions for elastic bodies possessing triaxial orthotropy,”

*Arch. Mech. Stos.*,

**7**, No. 1, 87–96 (1955).

MathSciNetGoogle Scholar60.

B. Yu. Nemish, “The stress state of orthotropic thick-walled cylinders under nonuniform pressure,”

*Prikl. Mekh.*,

**34**, No. 4, 61–68 (1998) (

*Int. Appl. Mech.*,

**34**, No. 4., 352–359 (1998)).

MATHMathSciNetGoogle Scholar61.

B. Yu. Nemish, “One approach to the solution of axisymmetric problems for spherically orthotropic bodies,” in:*Theoretical and Applied Mechanics* [in Russian], Issue 29 (1999), pp. 17–24.

62.

B. Yu. Nemish, “Three-dimensional thermoelasticity problems for nonuniformly heated laminar transversally isotropic plates,”

*Prikl. Mekh.*,

**35**, No. 7, 95–103 (1999) (

*Int. Appl. Mech.*,

**35**, No. 7, 732–740 (1999)).

MATHGoogle Scholar63.

B. Yu. Nemish, “An analytical method of solving one class of three-dimensional problems of thermoelasticity for laminated transversally isotropic plates with variable thickness,” in:*Theoretical and Applied Mechanics* [in Russian], Issue 30 (1999), pp. 26–36.

64.

B. Yu. Nemish, “Influence of anisotropy and boundary conditions on the thermoelastic equilibrium of nonuniformly heated laminated plates,”

*Prikl. Mekh.*,

**35**, No. 11, 96–105 (1999) (

*Int. Appl. Mech.*,

**35**, No. 11, 1173–1184 (1999)).

MATHGoogle Scholar65.

Yu. N. Nemish, “An approximate solution of three-dimensional problems of the theory of elasticity for a transversally isotropic medium,”

*Prikl. Mekh.*,

**5**, No. 8, 26–34 (1969).

Google Scholar66.

Yu. N. Nemish, “The axisymmetric problem on the stress state of orthotropic elastic bodies,”

*Prikl. Meck.*,

**7**, No. 6, 17–24 (1971).

MathSciNetGoogle Scholar67.

Yu. N. Nemish, “The method of small parameters in three-dimensional axisymmetric problems for cylindrically orthotropic bodies,”

*Dop. Akad. Nauk Ukr. RSR, Ser. A*, No. 3, 247–249 (1972).

Google Scholar68.

Yu. N. Nemish, “An approximate method of analysis of the symmetric strain of orthotropic bodies,”

*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 5, 81–87 (1972).

Google Scholar69.

Yu. N. Nemish, “An approximate method of solution of boundary-value problems of the mathematical theory of elasticity for an anisotropic medium,”

*Mat. Fiz.*, No. 11, 98–104 (1972).

Google Scholar70.

Yu. N. Nemish, “An approximate method of solution of three-dimensional problems of the theory of elasticity of a curvilinearly orthotropic body for noncanonical domains,”

*Prikl. Mekh.*,

**14**, No. 7, 10–17 (1978).

Google Scholar71.

Yu. N. Nemish,

*Elements of the Mechanics of Piecewise Homogeneous Bodies with Noncanonical Interfaces* [in Russian], Naukova Dumka, Kiev (1989).

MATHGoogle Scholar72.

Yu. N. Nemish, “One class of the exact analytical solutions of the three-dimensional thermoelastic-equilibrium equations for orthotropic plates,”

*Prikl. Mekh.*,

**36**, No. 1, 78–87 (2000) (

*Int. Appl. Mech.*,

**36**, No. 1, 78–87 (2000)).

MATHMathSciNetGoogle Scholar73.

Yu. N. Nemish and N. M. Bloshko,

*The Stress State of Elastic Cylinders with Grooves* [in Russian], Nauka Dumka, Kiev (1987).

Google Scholar74.

Yu. N. Nemish and M. Yu. Kashtalyan, “The stress-strain state of bent rectangular transversally isotropic plates of variable thickness,”

*Prikl. Mekh.*,

**28**, No. 6, 14–22 (1992) (Int. Appl. Mech.,

**28**, No. 6, 352–359 (1992)).

MATHGoogle Scholar75.

Yu. N. Nemish and M. Yu. Kashtalyan, “The stress-strain state of bent transversally isotropic plates with constant and variable thickness,”

*Prikl. Mekh.*,

**29**, No. 3, 24–31 (1993) (

*Int. Appl. Mech.*,

**29**, No. 3, 189–194 (1993)).

Google Scholar76.

Yu. N. Nemish, D. F. Lyalyuk, and D. I. Chernopiskii, “The thermoelastic equilibrium of thick-walled transversally isotropic nearly spherical shells,”*Abstracts of Papers Read at 15th Sci. Conf. Thermal Strecey of Structural Elements*, Kiev (1980).

77.

Yu. N. Nemish and V. N. Nemish, “Torsion of orthotropic solids of revolution with noncanonical cavities and inclusions,”

*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 6, 101–111 (1976).

Google Scholar78.

Yu. N. Nemish and V. N. Nemish, “Solution of three-dimensional problems of the theory of clasticity of a transversally isotropic medium for noncanonical domains,”

*Prikl. Mekh.*,

**12**, No. 12, 73–82 (1976).

Google Scholar79.

Yu. N. Nemish and V. N. Nemish, “The stress state of a transversally isotropic medium weakened by a closed conical cavity,”

*Mat. Fiz.*, No. 26, 110–114 (1979).

MATHGoogle Scholar80.

Yu. N. Nemish and V. N. Nemish, “The stress concentration near closed noncanoical cavities in transversally isotropic media,”*Abstracts of Papers Read at Rep. Symp. on Stress Concentration*, Donetsk (1983), pp. 80–81.

81.

Yu. N. Nemish and I. Yu. Khoma, “Determination of the stress-strain state of nonthin transversally isotropic spherical shells with curvilinear openings,”

*Prikl. Mekh.*,

**34**, No. 6, 54–63 (1998) (

*Int. Appl. Mech.*,

**34**, No. 6, 552–560 (1998)).

MATHGoogle Scholar82.

Yu. N. Nemish and I. Yu. Khoma,

*Nonthin Transversally Isotropic Shells*, Vol. 7, Chapter 10 of the 12-volume

*Mechanics of Composites* [in Russian] (A. N. Guz', general editor), A.S.K., Kiev (1998), pp. 252–287.

Google Scholar83.

Yu. N. Nemish, I. Yu. Khoma, and D. I. Chernopiskii, “Determination of the stress-strain state of nonthin transversally isotropic spherical shells with elastically stiffened curvilinear holes,”

*Prikl. Mekh.*,

**35**, No. 8, 18–28 (1999) (

*Int. Appl. Mech.*,

**35**, No. 8, 767–777 (1999)).

MATHGoogle Scholar84.

Yu. N. Nemish and D. I. Chernopiskii, “The axisymmetric stress state of deformable cylinders with variable thickness,”

*Prikl. Mekh.*,

**11**, No. 10, 9–18 (1975).

Google Scholar85.

Yu. N. Nemish and D. I. Chernopiskii, “An asymptotic method of analysis of thick-walled shells bounded by noncoordinate surfaces,” in:*Proc. 10th All-Union Conf. on the Theory of Shells and Plates*, Vol. 1, Tbilisi (1975), pp. 235–243.

86.

Yu. N. Nemish and D. I. Chernopiskii, “Some axisymmetric boundary-value problems of the statics of crossly corrugated laminated cylinders,”

*Prikl. Mekh.*,

**13**, No. 6, 38–46 (1977).

Google Scholar87.

Yu. N. Nemish and D. I. Chernopiskii, “Some three-dimensional boundary-value problems for longitudinally corrugated thick-walled cylinders,”

*Prikl. Mekh.*,

**14**, No. 3, 34–44 (1978).

Google Scholar88.

Yu. N. Nemish and D. I. Chernopiskii,

*Elastic Equilibrium of Corrugated Bodies* [in Russian], Naukova Dumka, Kiev (1983).

MATHGoogle Scholar89.

V. L. Novatskii, “The stress function in three-dimensional problems of an elastic body with transversal isotropy,”

*Bull. Acad. Polon. Sci Otd. 4*,

**4**, No. 1, 21–25 (1954).

Google Scholar90.

Yu. Novinskii, V. Ol'shak, and V. Urbanskii, “The thermoelastic problem for media possessing curvilinear orthotropy,”

*Bull. Acad. Polon. Sci Otd. 4*,

**4**, No. 2, 105–112 (1956).

Google Scholar91.

V. V. Novozhilov,

*The Theory of Elasticity* [in Russian], Sudpromgiz, Leningrad (1958).

Google Scholar92.

V. G. Piskunov, V. S. Sipetov, and Sh. Sh. Tuimetov, “Bending of a thick transversally isotropic plate by a transversal load,”

*Prikl. Mekh.*,

**23**, No. 11, 21–26 (1987).

Google Scholar93.

V. G. Piskunov, V. S. Sipetov, and Sh. Sh. Tuimetov, “Solution of problems of the statics for laminated orthotropic plates in spatial formulation,”

*Prikl. Mekh.*,

**26**, No. 2, 41–49 (1990).

Google Scholar94.

Yu. N. Podil'chuk,

*Three-Dimensional Problems of the Theory of Elasticity* [in Russian], Naukova Dumka, Kiev (1979).

Google Scholar95.

Yu. N. Podil'chuk,

*Boundary Problems of the Statics of Elastic Bodies*, Vol. 1 of the six-volume

*Spatial Problems of the Theory of Elasticity and Plasticity* [in Russian], (A. N. Guz', general editor), Naukova Dumka, Kiev (1984).

Google Scholar96.

Yu. N. Podil'chuk, “The exact analytical solutions of three-dimensional boundary-value problems of the statics of a transversally isotropic canonical body (review),”

*Prikl. Mekh.*,

**33**, No. 10, 3–30 (1997) (

*Int. Appl. Mech.*,

**33**, No. 10, 763–787 (1997)).

MathSciNetGoogle Scholar97.

Yu. N. Podil'chuk, “Representation of the general solution of equations for a transversally isotropic piezoceramic body in terms of harmonic functions,”

*Prikl. Mekh.*,

**34**, No. 7, 20–26 (1998) (

*Int. Appl. Mech.*,

**34**, No. 7, 623–628 (1998)).

MATHGoogle Scholar98.

Yu. N. Podil'chuk and A. H. Passoss Morgado, “Representation of the general solution of the equations of static thermoelectroelasticity of a transversally isotropic piezoceramic body in terms of potential functions,” in:*Theoretical and Applied Mechanics* [in Russian], Issue 29 (1999), pp. 42–51.

99.

A. P. Prusakov, “Functions of displacements in problems of the theory of elasticity,”

*Prikl. Mekh.*,

**35**, No. 5, 64–68 (1999) (

*Int. Appl. Mech.*,

**35**, No. 5, 488–492 (1999)).

MATHGoogle Scholar100.

I. A. Prusov and Yu. V. Vasilevich, “A new representation of the general formulas of the theory of elasticity for an orthotropic body subject to a normal load,”

*Vesn. Belorus Univ.*, Ser. 1, No. 2, 42–46 (1991).

MathSciNetGoogle Scholar101.

A. L. Rabinovich, “Elastic constants and strength of air materials,”

*Tr. TsAGI*, No. 582, 1–56 (1946).

Google Scholar102.

A. L. Rabinovich,

*An Introduction to the Mechanics of Reinforced Polymers* [in Russian], Nauka, Moscow (1970).

Google Scholar103.

G. N. Savin and Yu. N. Nemish, “The method of perturbation of elastic properties in the mechanics of rigid deformable bodies,”

*Dokl. Akad. Nauk SSSR*,

**216**, No. 1, 53–55 (1974).

Google Scholar104.

V. S. Sarkisyan,

*Some Problems of the Theory of Elasticity of an Anisotropic Body* [in Russian], Izd. Yerevanskogo Univ., Yerevan (1976).

Google Scholar105.

V. M. Sobolevskii, “The elastic stress state of an anisotropic spherical shell under internal and external pressures and a radial thermal flow,”

*Dokl. Akad. Nauk Belorus. SSR*,

**2**, No. 4, 147–155 (1958).

MathSciNetGoogle Scholar106.

Yu. I. Solov'ev, “Solution of the axisymmetric problem of the theory of elasticity for transversally isotropic bodies using generalized analytical functions,”

*Prikl. Mat. Mekh.*,

**38**, No. 2, 379–384 (1974).

ADSGoogle Scholar107.

V. T. Golovchan (ed.),

*Statics of Materials*, Vol. 1 of the 12-volume

*Mechanics of Composites* [in Russian] (A. N. Guz', general editor), Naukova Dumka, Kiev (1993).

Google Scholar108.

Ya. M. Grigorenko (ed.),

*Statics of Structural Elements*, Vol. 8 of the 12-volume

*Mechanics of Composites* [in Russian] (A. N. Guz', general editor), A.S.K., Kiev (1999).

Google Scholar109.

L. P. Khoroshun (ed.),

*Statistical Mechanics and Effective Properties of Materials*, Vol. 3 of the 12-volume

*Mechanics of Composites* (A. N. Guz', general editor) [in Russian], Naukova Dumka, Kiev (1993).

Google Scholar110.

G. Hantington, “Elastic constants of crystals,”

*Usp. Fiz. Mat. Nauk*,

**74**, No. 3, 462–520 (1961).

Google Scholar111.

G. M. Khatiashvili,

*The Almansi-Mitchel Problems for Homogeneous and Compound Bodies* [in Russian], Part 1, Metsniereba, Tbilisi (1983).

Google Scholar112.

A. G. Khatkevich, “Elastic constants of crystals,”

*Kristallografiya*,

**6**, No. 5, 700–703 (1961).

Google Scholar113.

I. Yu. Khoma,

*The Generalized Theory of Anisotropic Shells* [in Russian], Naukova Dumka, Kiev (1986).

Google Scholar114.

W. T. Chen, “On some problems in transversally isotropic elastic materials,”

*Trans. ASME, Ser. E. Prikl. Mekh.*,

**33**, No. 2, 98–107 (1966).

Google Scholar115.

W. T. Chen, “On some problems in elastic materials with spherical isotropy,”

*Trans. ASME, Ser. E. Prikl. Mekh*,

**33**, No. 3, 71–79 (1966).

Google Scholar116.

N. G. Chentsov, “Examination of veneer as an anisotropic plate,”

*Tekhn. Zamet. TsAGI*, No. 91, 1–27 (1936).

Google Scholar117.

V. A. Shaldyrvan, A. A. Sumtsov, and V. A. Soroka, “Study of stress concentration in short hollow cylinders made of transversally isotropic materials,”

*Prikl. Mekh.*,

**35**, No. 7, 43–48 (1999) (

*Int. Appl. Mech.*,

**35**, No. 7, 678–683 (1999)).

MATHGoogle Scholar118.

F. Auerbach, “Elastizität der Kristalle,” in:*Handbuch der physikalishe und techniche Mechanik*, B.3, Leipzig (1927), pp. 239–282.

119.

C. J. Bozs,

*Teoria Elastlcitatii Corpurilor Anisotrope*, Ed. Acad R.S. Romania, Bucuresti (1970).

Google Scholar120.

A. L. Cauchy, “Surles equations differentielles d'equilibre ou de mouvement pour un system de points materials,”*Ex.de Math.*, No. 4 (1829).

121.

W. T. Chen, “An elastic orthotropic ellipsoid in a centrifugal force field,”

*Trans. ASME, Ser. E*,

**36**, No. 2, 313–316 (1969).

Google Scholar122.

W. T. Chen, “Stresses in some anisotropic materials due to indentation and sliding,”

*Int. J. Sol. Struct.*,

**5**, No. 3, 191–214 (1969).

MATHCrossRefADSGoogle Scholar123.

A. H. Elliott, “Three-dimensional stress distributions in hexagonal aelotropic crystals,”

*Proc. Cambr. Phil. Soc.*,

**44**, pt. 4, 522–533 (1948).

CrossRefGoogle Scholar124.

R. A. Eubanks and E. Sternberg, “On the axisymmetric problem of elasticity theory for a medium with transverse isotropy,”

*J. Rational Mech. Analys.*,

**3**, No. 1, 89–101 (1954).

MathSciNetGoogle Scholar125.

A. E. Green and W. Zerna,

*Theoretical Elasticity*, Univ. Press, Oxford (1954).

MATHGoogle Scholar126.

H. Grüters, “Iterative Lösung von Lastspannungsproblemen in anisotropen Korpern,”

*Z. Angew. Math. Mech.*,

**54**, No. 4, 79–80 (1974).

Google Scholar127.

Hata Kin-ichi, “Some remarks on the three-dimensional problems concerned with the isotropic and anisotropic elastic solids,”

*Mem. Fac. Engng. Hokkaido Univ.*,

**10**, No. 2, 129–177 (1956).

Google Scholar128.

Hata Kin-ichi, “On the method for solving three-dimensional elasticity problems in orthotropic solids,” in:*Proc. 6th Japan. Nat. Congr. Appl. Mech.*, Tokyo (1957) pp. 43–46.

129.

M. Hayes, “On the displacement boundary-value problem in linear elastostatics,”

*Quart. J. Mech. Appl. Math.*,

**19**, No. 2, 151–155 (1966).

MATHMathSciNetCrossRefGoogle Scholar130.

R. F. S. Hearmon,

*An Introduction to Applied Anisotropic Elasticity*, S. 1, Oxford Univ. Press, London (1961).

Google Scholar131.

L. R. Hermann, “Stress functions for axisymmetric, orthotropic, elasticity equations,”

*AIAAT*, No. 2, 1822–1824 (1964).

Google Scholar132.

Hu Hai-Chang, “On the three-dimensional problems of the theory of elasticity of a transversely isotropic body,”

*Acta. Sci. Sinica.*,

**2**, No. 2, 145–151 (1953).

MathSciNetGoogle Scholar133.

Hu Hai-Chang, “On the equilibrium and vibration of a transversely isotropic elastic body,” Sci. Sinica.,

**5**, No. 1, 1–18 (1956).

Google Scholar134.

S. Kaliski, “On a conception of basis solutions for orthotropic elastic and inelastic bodies,”

*Arch. Mech. Stos.*, No. 11, 45–60 (1959).

MathSciNetGoogle Scholar135.

A. S. Lodge, “The transformation to isotropic form of the equilibrium equations for a class of anisotropic elastic solids,”

*Quart. J. Mech. Appl. Math.*,

**8**, No. 2, 211–225 (1955).

MathSciNetCrossRefGoogle Scholar136.

Z. Mossakowska, “Stress functions of elastic bodies with three-dimensional orthotropy,”

*Bull. Acad. Polon. Sci.*, No. 1, 3–6 (1955).

Google Scholar137.

B. Saint-Venant, “Metoire sur les divers genres d'homogenete des corps solids,”

*Journ. de math. pures et appl.*,

**10**, 297–349 (1865).

Google Scholar138.

I. Todhunter and K. Person,*A History of the Theory of Elasticity and of the Strength of Materials*, Cambridge (1893).

139.

W. Voigt,*Lerbuch der Kristallphysik (Teubner)*, Leibzig-Berlin (1928).