1.

A. Ya. Aleksandrov, “Representation of the components of the three-dimensional axisymmetric state of a transversally isotropic body using functions of complex variable and contour integrals,”*Izv. Akad. Nauk SSSR Mekh. Mashinostr.*, No. 2, 149–152 (1969).

2.

A. Ya. Aleksandrov and V. S. Vol'pert, “Solution of three-dimensional problems of the theory of elasticity for a transversally isotropic body using analytical functions,”*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 5, 82–91 (1967).

3.

A. Ya. Aleksandrov and Yu. I. Solov'ev,*Three-Dimensional Problems of the Theory of Elasticity* [in Russian], Nauka, Moscow (1978).

4.

K. S. Aleksandrov and T. V. Ryzhova, “The elastic properties of crystals (review),”*Kristallografiya*,**6**, No. 2, 289–314 (1961).

5.

E. V. Altukhov, A. S. Kosmodamianskii, and V. A. Shaldyrvan, “The bending of a thick ring plate,”*Izv. Akad. Nauk Arm. SSR Mekh.*,**28**, No. 6, 66–72 (1975).

6.

S. A. Ambartsumyan,*Theory of Anisotropic Plates* [in Russian], Nauka, Moscow (1967).

7.

S. A. Ambartsumyan,*General Theory of Anisotropic Shells* [in Russian], Nauka, Moscow (1974).

8.

E. K. Ashkenazi,*Anisotropy of Machine-Building Materials* [in Russian], Mashinostroyeniye, Leningrad (1969).

9.

E. K. Ashkenazi and É. V. Ganov,*Anisotropy of Structural Materials: A Reference Book* [in Russian], Lesn. Prom., Leningrad (1980).

10.

E. K. Ashkenazi and A. S. Morozov, “A technique for experimental investigation of the elastic properties of composite materials,”*Zavod. Labor.*, No. 6, 731–735 (1976).

11.

I. Yu. Babich and B. Yu. Nemish, “The axisymmetric stress state of orthotropic cylinders under nonuniform pressure,”*Abstracts of Papers Read at the Voronezh Sch. Modern Problems of Mechanics and Applied Mathematics* [in Russian], Voronezh (1998), p. 29.

12.

I. Yu. Babich and B. Yu. Nemish, “The three-dimensional thermostress state of transversally isotropic composite plates under nonuniform heat,”*Abstracts of Papers Read at Intern. Conf. Dynamical Syst. Model. Stab. Invest.* [in Russian], Kiev (1999), p. 7.

13.

É. N. Bayda, “The general solution of equilibrium equations for anisotropic and isotropic bodies,”*Izv. Vuzov Str. Arkh.*, No. 6, 17–27 (1958).

14.

É. N. Bayda, “The method of three functions for an anisotropic body,” in:*Sb. Nauchn. Tr. Leningrad. Inzh.-Str. Inst.*, Issue 29 (1958), pp. 17–45.

15.

É. N. Bayda, “Pleonisms in the general solution of the equilibrium equations in displacements for an anisotropic body,”*Izv. Vuzov Str. Arkh.*, No. 1, 27–37 (1959).

16.

S. A. Batugin and R. K. Nirenburg, “Approximate dependence between the elastic constants of rock. Parameters of anisotropy,”*Fiz.-Tekh. Probl. Razr. Polezn. Iskop.*,**7**, No. 1, 7–11 (1972).

17.

Kh. B. Berkinov, “Functions of the stress tensor of an anisotropic elastic body,” in:*Integration of Some Differential Equations of Mathematical Physics* [in Russian], Nauka, Tashkent (1964), pp. 83–103.

18.

Kh. B. Berkinov and N. M. Sayfullaev, “The tensor of stress functions for an anisotropic elastic body,”*Dokl. Akad. Nauk Tadzh. SSR*,**10**, No. 11, 13–15 (1967).

19.

N. M. Bloshko, “The stress state of a transversally isotropic corrugated cylinder of finite dimensions,”*Prikl. Mekh.*,**19**, No. 2, 38–43 (1983).

20.

N. M. Bloshko and Yu. N. Nemish, “Elastic equilibrium of transversally isotropic cylinders with perturbed lateral surfaces,”*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 4, 93–99 (1984).

21.

N. M. Bloshko and Yu. N. Nemish, “The axisymmetric stress state of finite elastic cylinders with grooves of arbitrary shapes,”*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 6, 53–61 (1988).

22.

Yu. V. Vasilevich and I. A. Prusov, “One method of solution of the first basic problem for an orthotropic half-space,”*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 2, 66–72 (1989).

23.

Yu. V. Vasilevich and I. A. Prusov, “Stresses and displacements for an elastic orthotropic half-space under a normal load,”*Teor. Prikl. Mekh.*, No. 3, 56–59 (1989).

24.

B. F. Vlasov, “One case of bending of a rectangular thick plate,”

*Vestnik Moscovskogo Univ. Mat. Mekh.*, No. 2, 25–34 (1957).

MathSciNet25.

V. S. Vol'pert, “Solution of the basic problems of the theory of elasticity for a transversally isotropic paraboloid and two-sheet hyperboloid of revolution,” in:*Tr. Novosibirskogo Inst. Zhel.-Dor. Transp.*, Issue 96 (1970), pp. 158–165.

26.

Sh. Kh. Ganev, “The complete solution of the three-dimensional problem of orthotropic continuous media in rectangular coordinates,” in:*Proc. Inter. Conf. on Continuum Mechanic*, Izd. Bolg. Akad. Nauk, Sofia (1968), pp. 123–134.

27.

V. T. Golovchan,*Anisotropy of the Physical-Mechanical Properties of Composite Materials* [in Russian], Naukova Dumka, Kiev (1987).

28.

Ya. M. Grigorenko and A. T. Vasilenko,*Problems of the Statics of Anisotropic Inhomogeneous Shells* [in Russian], Nauka, Moscow (1992).

29.

Ya. M. Grigorenko, A. T. Vasilenko, and N. D. Pankratova,*The Statics of Anisotropic Thick-Walled Shells* [in Russian], Naukova Dumka, Kiev (1985).

30.

V. T. Grinchenko,*The Equilibrium and Steady-State Vibrations of Elastic Finite Bodies* [in Russian], Naukova Dumka, Kiev (1978).

31.

A. N. Guz', “Representation of the solutions of three-dimensional axisymmetric problems of the theory of elasticity for a transversally isotropic body,”

*Dop. Akad. Nauk Ukr. SSR*, No. 12, 1592–1595 (1963).

MathSciNet32.

A. N. Guz' and Yu. N. Nemish,*Perturbation Methods in Three-Dimensional Problems of the Theory of Elasticity* [in Russian], Vyshcha Shkola, Kiev (1982).

33.

A. N. Guz' and Yu. N. Nemish,*The Statics of Elastic Noncanonical Bodies*, Vol. 2 of the six-volume*Three-Dimensional Problems of the Theory of Elasticity and Plasticity* [in Russian], (A. N. Guz', general editor), Naukova Dumka, Kiev (1984).

34.

V. M. Deev, “Solution of the three-dimensional problem of theory of elasticity for an anisotropic medium,”

*Dop. Akad. Nauk Ukr. SSR*, No. 7, 707–711 (1958).

MathSciNet35.

V. M. Deev and N. S. Smirnov, “The general solution in the statics of an elastic medium in the case of curvilinear anisotropy,” in:*Proc. 8th Sci.-Tech. Conf.*, Izd. Kharkov. Univ., Kharkov (1968), pp. 167–171.

36.

A. A. Dorodnitsyn, “The use of the small-parameter method in the numerical solution of equations of mathematical physics,” in:*Tr. Vychisl. Tsent. Akad. Nauk SSSR Numerical Solution of Problems of Continuum Mechanics* [in Russian], Izd. Akad. Nauk SSSR, Moscow (1969), pp. 85–100.

37.

M. Yu. Kashtalyan and Yu. N. Nemish, “Solution of three-dimensional boundary-value problems of the statics for orthotropic plates,”*Dokl. Akad. Nauk Ukr. SSR*, No. 10, 66–70 (1992).

38.

M. Yu. Kashtalyan and Yu. N. Nemish, “The stress-strain state of transversally isotropic constant- and variable-thickness plates bent by localized loads,”*Prikl. Mekh.*,**29**, No. 3, 24–31 (1993) (*Int. Appl. Mech.*,**29**, No. 3, 189–194 (1993)).

39.

M. Yu. Kashtalyan and Yu. N. Nemish, “The three-dimensional stress-strain state of bent rectangular orthotropic plates of variable thickness,”*Prikl. Mekh.*,**30**, No. 12, 39–48 (1994) (*Int. Appl. Mech.*,**30**, No. 12, 952–961 (1994)).

40.

I. V. Kim, “On some problems of the theory of elasticity for an orthogonally isotropic half-space,” in:*Sb. Tr. Tashkentskogo Inst. Inzh. Zhel.-Dor. Transp.*, Issue 56 (1968), pp. 51–62.

41.

I. V. Kim, “The static problem for a orthogonally anisotropic elastic cylinder,”*Dokl. Akad. Nauk Uz. SSR*, No. 10, 3–5 (1968).

42.

I. V. Kim, “Elastic equilibrium of infinite orthotropic space weakened by two elliptic slits,”*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 2, 74–80 (1972).

43.

S. Clark,*Handbook of Physical Constants* [Russian translation], Nauka, Moscow (1969).

44.

A. N. Guz', A. S. Kosmodamianskii, and V. P. Shevchenko (eds.),*Stress Concentration*, Vol. 7 of the 12-volume*Mechanics of Composites* [in Russian] (A. N. Guz', general editor), A.S.K., Kiev (1998).

45.

A. S. Kosmodamianskii,*The Stress State of Anisotropic Media with Openings or Cavities* [in Russian], Vyshcha Shkola, Kiev-Donetsk (1976).

46.

A. S. Kosmodamianskii and V. A. Galich, “The general solution of the three-dimensional problem of the theory of elasticity for a laminated orthotropic cylindrical shells,”*Dokl. Akad. Nauk SSSR, Ser. A*, No. 8, 46–48 (1984).

47.

A. S. Kosmodamianskii and V. A. Shaldyrvan, “Determination of the stress state of multiply connected transtropic plates,”*Prikl. Mat. Mekh.*,**39**, No. 5, 909–917 (1975).

48.

A. S. Kosmodamianskii and V. A. Shaldyrvan,*Thick Multiply Connected Plates* [in Russian], Naukova Dumka, Kiev (1978).

49.

B. M. Koyalovich, “Analysis of infinite systems of linear algebraic equations,”*Izv. Phys.-Mat. Inst. im. V. A. Steklova*, No. 3, 41–167 (1930).

50.

V. D. Kupradze, T. G. Gegelia, M. O. Basheleyshvili, and T. V. Burchuladze,*Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity* [in Russian], Nauka, Moscow (1976).

51.

S. G. Lekhnitskii,*Anisotropic Plates* [in Russian], Gostekhizdat, Moscow (1957).

52.

S. G. Lekhnitskii,*The Theory of Elasticity of an Anisotropic Body* [in Russian], Nauka, Moscow (1977).

53.

D. F. Lyalyuk, Yu. N. Nemish, and D. I. Chernopiskii, “Elastic equilibrium of thick-walled transversally isotropic nearly spherical shells,” in:*Proc. 12th All-Union Conf. on the Theory of Shells and Plates*, Vol. 3, Metsniereba, Yerevan (1980). pp. 38–44.

54.

P. Marinov, “Stiffness of a prismatic solid with natural orthotropy under conditions of three-dimensional stress state,”*Izv. Inst. Mekh.*, No. 4, 133–152 (1967).

55.

P. Marinov, “Stiffness of a simply supported prismatic solid with natural orthotropy,”*Izv. Inst. Tekh. Mekh.*, No. 4, 153–167 (1967).

56.

Yu. I. Matyash, “The axisymmetric elastic equilibrium of a three-layer crossly corrugated transversally isotropic cylinder,”*Prikl. Mekh.*,**19**, No. 6, 39–46 (1983).

57.

A. N. Guz' and S. D. Akbarov,*Mechanics of Materials with Curved Structures*, Vol. 4 of the 12-volume*Mechanics of Composites* [in Russian] (A. N. Guz', general editor), Naukova Dumka, Kiev (1995).

58.

Z. Mossakowska, “Stress functions for elastic bodies possessing triaxial orthotropy,”*Bull. Acad. Polon. Sci, Otd. 4*,**3**, No. 1, 3–6 (1955).

59.

Z. Mossakowska, “Stress functions for elastic bodies possessing triaxial orthotropy,”

*Arch. Mech. Stos.*,

**7**, No. 1, 87–96 (1955).

MathSciNet60.

B. Yu. Nemish, “The stress state of orthotropic thick-walled cylinders under nonuniform pressure,”

*Prikl. Mekh.*,

**34**, No. 4, 61–68 (1998) (

*Int. Appl. Mech.*,

**34**, No. 4., 352–359 (1998)).

MATHMathSciNet61.

B. Yu. Nemish, “One approach to the solution of axisymmetric problems for spherically orthotropic bodies,” in:*Theoretical and Applied Mechanics* [in Russian], Issue 29 (1999), pp. 17–24.

62.

B. Yu. Nemish, “Three-dimensional thermoelasticity problems for nonuniformly heated laminar transversally isotropic plates,”

*Prikl. Mekh.*,

**35**, No. 7, 95–103 (1999) (

*Int. Appl. Mech.*,

**35**, No. 7, 732–740 (1999)).

MATH63.

B. Yu. Nemish, “An analytical method of solving one class of three-dimensional problems of thermoelasticity for laminated transversally isotropic plates with variable thickness,” in:*Theoretical and Applied Mechanics* [in Russian], Issue 30 (1999), pp. 26–36.

64.

B. Yu. Nemish, “Influence of anisotropy and boundary conditions on the thermoelastic equilibrium of nonuniformly heated laminated plates,”

*Prikl. Mekh.*,

**35**, No. 11, 96–105 (1999) (

*Int. Appl. Mech.*,

**35**, No. 11, 1173–1184 (1999)).

MATH65.

Yu. N. Nemish, “An approximate solution of three-dimensional problems of the theory of elasticity for a transversally isotropic medium,”*Prikl. Mekh.*,**5**, No. 8, 26–34 (1969).

66.

Yu. N. Nemish, “The axisymmetric problem on the stress state of orthotropic elastic bodies,”

*Prikl. Meck.*,

**7**, No. 6, 17–24 (1971).

MathSciNet67.

Yu. N. Nemish, “The method of small parameters in three-dimensional axisymmetric problems for cylindrically orthotropic bodies,”*Dop. Akad. Nauk Ukr. RSR, Ser. A*, No. 3, 247–249 (1972).

68.

Yu. N. Nemish, “An approximate method of analysis of the symmetric strain of orthotropic bodies,”*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 5, 81–87 (1972).

69.

Yu. N. Nemish, “An approximate method of solution of boundary-value problems of the mathematical theory of elasticity for an anisotropic medium,”*Mat. Fiz.*, No. 11, 98–104 (1972).

70.

Yu. N. Nemish, “An approximate method of solution of three-dimensional problems of the theory of elasticity of a curvilinearly orthotropic body for noncanonical domains,”*Prikl. Mekh.*,**14**, No. 7, 10–17 (1978).

71.

Yu. N. Nemish,

*Elements of the Mechanics of Piecewise Homogeneous Bodies with Noncanonical Interfaces* [in Russian], Naukova Dumka, Kiev (1989).

MATH72.

Yu. N. Nemish, “One class of the exact analytical solutions of the three-dimensional thermoelastic-equilibrium equations for orthotropic plates,”

*Prikl. Mekh.*,

**36**, No. 1, 78–87 (2000) (

*Int. Appl. Mech.*,

**36**, No. 1, 78–87 (2000)).

MATHMathSciNet73.

Yu. N. Nemish and N. M. Bloshko,*The Stress State of Elastic Cylinders with Grooves* [in Russian], Nauka Dumka, Kiev (1987).

74.

Yu. N. Nemish and M. Yu. Kashtalyan, “The stress-strain state of bent rectangular transversally isotropic plates of variable thickness,”

*Prikl. Mekh.*,

**28**, No. 6, 14–22 (1992) (Int. Appl. Mech.,

**28**, No. 6, 352–359 (1992)).

MATH75.

Yu. N. Nemish and M. Yu. Kashtalyan, “The stress-strain state of bent transversally isotropic plates with constant and variable thickness,”*Prikl. Mekh.*,**29**, No. 3, 24–31 (1993) (*Int. Appl. Mech.*,**29**, No. 3, 189–194 (1993)).

76.

Yu. N. Nemish, D. F. Lyalyuk, and D. I. Chernopiskii, “The thermoelastic equilibrium of thick-walled transversally isotropic nearly spherical shells,”*Abstracts of Papers Read at 15th Sci. Conf. Thermal Strecey of Structural Elements*, Kiev (1980).

77.

Yu. N. Nemish and V. N. Nemish, “Torsion of orthotropic solids of revolution with noncanonical cavities and inclusions,”*Izv. Akad. Nauk SSSR Mekh. Tverd. Tela*, No. 6, 101–111 (1976).

78.

Yu. N. Nemish and V. N. Nemish, “Solution of three-dimensional problems of the theory of clasticity of a transversally isotropic medium for noncanonical domains,”*Prikl. Mekh.*,**12**, No. 12, 73–82 (1976).

79.

Yu. N. Nemish and V. N. Nemish, “The stress state of a transversally isotropic medium weakened by a closed conical cavity,”

*Mat. Fiz.*, No. 26, 110–114 (1979).

MATH80.

Yu. N. Nemish and V. N. Nemish, “The stress concentration near closed noncanoical cavities in transversally isotropic media,”*Abstracts of Papers Read at Rep. Symp. on Stress Concentration*, Donetsk (1983), pp. 80–81.

81.

Yu. N. Nemish and I. Yu. Khoma, “Determination of the stress-strain state of nonthin transversally isotropic spherical shells with curvilinear openings,”

*Prikl. Mekh.*,

**34**, No. 6, 54–63 (1998) (

*Int. Appl. Mech.*,

**34**, No. 6, 552–560 (1998)).

MATH82.

Yu. N. Nemish and I. Yu. Khoma,*Nonthin Transversally Isotropic Shells*, Vol. 7, Chapter 10 of the 12-volume*Mechanics of Composites* [in Russian] (A. N. Guz', general editor), A.S.K., Kiev (1998), pp. 252–287.

83.

Yu. N. Nemish, I. Yu. Khoma, and D. I. Chernopiskii, “Determination of the stress-strain state of nonthin transversally isotropic spherical shells with elastically stiffened curvilinear holes,”

*Prikl. Mekh.*,

**35**, No. 8, 18–28 (1999) (

*Int. Appl. Mech.*,

**35**, No. 8, 767–777 (1999)).

MATH84.

Yu. N. Nemish and D. I. Chernopiskii, “The axisymmetric stress state of deformable cylinders with variable thickness,”*Prikl. Mekh.*,**11**, No. 10, 9–18 (1975).

85.

Yu. N. Nemish and D. I. Chernopiskii, “An asymptotic method of analysis of thick-walled shells bounded by noncoordinate surfaces,” in:*Proc. 10th All-Union Conf. on the Theory of Shells and Plates*, Vol. 1, Tbilisi (1975), pp. 235–243.

86.

Yu. N. Nemish and D. I. Chernopiskii, “Some axisymmetric boundary-value problems of the statics of crossly corrugated laminated cylinders,”*Prikl. Mekh.*,**13**, No. 6, 38–46 (1977).

87.

Yu. N. Nemish and D. I. Chernopiskii, “Some three-dimensional boundary-value problems for longitudinally corrugated thick-walled cylinders,”*Prikl. Mekh.*,**14**, No. 3, 34–44 (1978).

88.

Yu. N. Nemish and D. I. Chernopiskii,

*Elastic Equilibrium of Corrugated Bodies* [in Russian], Naukova Dumka, Kiev (1983).

MATH89.

V. L. Novatskii, “The stress function in three-dimensional problems of an elastic body with transversal isotropy,”*Bull. Acad. Polon. Sci Otd. 4*,**4**, No. 1, 21–25 (1954).

90.

Yu. Novinskii, V. Ol'shak, and V. Urbanskii, “The thermoelastic problem for media possessing curvilinear orthotropy,”*Bull. Acad. Polon. Sci Otd. 4*,**4**, No. 2, 105–112 (1956).

91.

V. V. Novozhilov,*The Theory of Elasticity* [in Russian], Sudpromgiz, Leningrad (1958).

92.

V. G. Piskunov, V. S. Sipetov, and Sh. Sh. Tuimetov, “Bending of a thick transversally isotropic plate by a transversal load,”*Prikl. Mekh.*,**23**, No. 11, 21–26 (1987).

93.

V. G. Piskunov, V. S. Sipetov, and Sh. Sh. Tuimetov, “Solution of problems of the statics for laminated orthotropic plates in spatial formulation,”*Prikl. Mekh.*,**26**, No. 2, 41–49 (1990).

94.

Yu. N. Podil'chuk,*Three-Dimensional Problems of the Theory of Elasticity* [in Russian], Naukova Dumka, Kiev (1979).

95.

Yu. N. Podil'chuk,*Boundary Problems of the Statics of Elastic Bodies*, Vol. 1 of the six-volume*Spatial Problems of the Theory of Elasticity and Plasticity* [in Russian], (A. N. Guz', general editor), Naukova Dumka, Kiev (1984).

96.

Yu. N. Podil'chuk, “The exact analytical solutions of three-dimensional boundary-value problems of the statics of a transversally isotropic canonical body (review),”

*Prikl. Mekh.*,

**33**, No. 10, 3–30 (1997) (

*Int. Appl. Mech.*,

**33**, No. 10, 763–787 (1997)).

MathSciNet97.

Yu. N. Podil'chuk, “Representation of the general solution of equations for a transversally isotropic piezoceramic body in terms of harmonic functions,”

*Prikl. Mekh.*,

**34**, No. 7, 20–26 (1998) (

*Int. Appl. Mech.*,

**34**, No. 7, 623–628 (1998)).

MATH98.

Yu. N. Podil'chuk and A. H. Passoss Morgado, “Representation of the general solution of the equations of static thermoelectroelasticity of a transversally isotropic piezoceramic body in terms of potential functions,” in:*Theoretical and Applied Mechanics* [in Russian], Issue 29 (1999), pp. 42–51.

99.

A. P. Prusakov, “Functions of displacements in problems of the theory of elasticity,”

*Prikl. Mekh.*,

**35**, No. 5, 64–68 (1999) (

*Int. Appl. Mech.*,

**35**, No. 5, 488–492 (1999)).

MATH100.

I. A. Prusov and Yu. V. Vasilevich, “A new representation of the general formulas of the theory of elasticity for an orthotropic body subject to a normal load,”

*Vesn. Belorus Univ.*, Ser. 1, No. 2, 42–46 (1991).

MathSciNet101.

A. L. Rabinovich, “Elastic constants and strength of air materials,”*Tr. TsAGI*, No. 582, 1–56 (1946).

102.

A. L. Rabinovich,*An Introduction to the Mechanics of Reinforced Polymers* [in Russian], Nauka, Moscow (1970).

103.

G. N. Savin and Yu. N. Nemish, “The method of perturbation of elastic properties in the mechanics of rigid deformable bodies,”*Dokl. Akad. Nauk SSSR*,**216**, No. 1, 53–55 (1974).

104.

V. S. Sarkisyan,*Some Problems of the Theory of Elasticity of an Anisotropic Body* [in Russian], Izd. Yerevanskogo Univ., Yerevan (1976).

105.

V. M. Sobolevskii, “The elastic stress state of an anisotropic spherical shell under internal and external pressures and a radial thermal flow,”

*Dokl. Akad. Nauk Belorus. SSR*,

**2**, No. 4, 147–155 (1958).

MathSciNet106.

Yu. I. Solov'ev, “Solution of the axisymmetric problem of the theory of elasticity for transversally isotropic bodies using generalized analytical functions,”

*Prikl. Mat. Mekh.*,

**38**, No. 2, 379–384 (1974).

ADS107.

V. T. Golovchan (ed.),*Statics of Materials*, Vol. 1 of the 12-volume*Mechanics of Composites* [in Russian] (A. N. Guz', general editor), Naukova Dumka, Kiev (1993).

108.

Ya. M. Grigorenko (ed.),*Statics of Structural Elements*, Vol. 8 of the 12-volume*Mechanics of Composites* [in Russian] (A. N. Guz', general editor), A.S.K., Kiev (1999).

109.

L. P. Khoroshun (ed.),*Statistical Mechanics and Effective Properties of Materials*, Vol. 3 of the 12-volume*Mechanics of Composites* (A. N. Guz', general editor) [in Russian], Naukova Dumka, Kiev (1993).

110.

G. Hantington, “Elastic constants of crystals,”*Usp. Fiz. Mat. Nauk*,**74**, No. 3, 462–520 (1961).

111.

G. M. Khatiashvili,*The Almansi-Mitchel Problems for Homogeneous and Compound Bodies* [in Russian], Part 1, Metsniereba, Tbilisi (1983).

112.

A. G. Khatkevich, “Elastic constants of crystals,”*Kristallografiya*,**6**, No. 5, 700–703 (1961).

113.

I. Yu. Khoma,*The Generalized Theory of Anisotropic Shells* [in Russian], Naukova Dumka, Kiev (1986).

114.

W. T. Chen, “On some problems in transversally isotropic elastic materials,”*Trans. ASME, Ser. E. Prikl. Mekh.*,**33**, No. 2, 98–107 (1966).

115.

W. T. Chen, “On some problems in elastic materials with spherical isotropy,”*Trans. ASME, Ser. E. Prikl. Mekh*,**33**, No. 3, 71–79 (1966).

116.

N. G. Chentsov, “Examination of veneer as an anisotropic plate,”*Tekhn. Zamet. TsAGI*, No. 91, 1–27 (1936).

117.

V. A. Shaldyrvan, A. A. Sumtsov, and V. A. Soroka, “Study of stress concentration in short hollow cylinders made of transversally isotropic materials,”

*Prikl. Mekh.*,

**35**, No. 7, 43–48 (1999) (

*Int. Appl. Mech.*,

**35**, No. 7, 678–683 (1999)).

MATH118.

F. Auerbach, “Elastizität der Kristalle,” in:*Handbuch der physikalishe und techniche Mechanik*, B.3, Leipzig (1927), pp. 239–282.

119.

C. J. Bozs,*Teoria Elastlcitatii Corpurilor Anisotrope*, Ed. Acad R.S. Romania, Bucuresti (1970).

120.

A. L. Cauchy, “Surles equations differentielles d'equilibre ou de mouvement pour un system de points materials,”*Ex.de Math.*, No. 4 (1829).

121.

W. T. Chen, “An elastic orthotropic ellipsoid in a centrifugal force field,”*Trans. ASME, Ser. E*,**36**, No. 2, 313–316 (1969).

122.

W. T. Chen, “Stresses in some anisotropic materials due to indentation and sliding,”

*Int. J. Sol. Struct.*,

**5**, No. 3, 191–214 (1969).

MATHCrossRefADS123.

A. H. Elliott, “Three-dimensional stress distributions in hexagonal aelotropic crystals,”

*Proc. Cambr. Phil. Soc.*,

**44**, pt. 4, 522–533 (1948).

CrossRef124.

R. A. Eubanks and E. Sternberg, “On the axisymmetric problem of elasticity theory for a medium with transverse isotropy,”

*J. Rational Mech. Analys.*,

**3**, No. 1, 89–101 (1954).

MathSciNet125.

A. E. Green and W. Zerna,

*Theoretical Elasticity*, Univ. Press, Oxford (1954).

MATH126.

H. Grüters, “Iterative Lösung von Lastspannungsproblemen in anisotropen Korpern,”*Z. Angew. Math. Mech.*,**54**, No. 4, 79–80 (1974).

127.

Hata Kin-ichi, “Some remarks on the three-dimensional problems concerned with the isotropic and anisotropic elastic solids,”*Mem. Fac. Engng. Hokkaido Univ.*,**10**, No. 2, 129–177 (1956).

128.

Hata Kin-ichi, “On the method for solving three-dimensional elasticity problems in orthotropic solids,” in:*Proc. 6th Japan. Nat. Congr. Appl. Mech.*, Tokyo (1957) pp. 43–46.

129.

M. Hayes, “On the displacement boundary-value problem in linear elastostatics,”

*Quart. J. Mech. Appl. Math.*,

**19**, No. 2, 151–155 (1966).

MATHMathSciNetCrossRef130.

R. F. S. Hearmon,*An Introduction to Applied Anisotropic Elasticity*, S. 1, Oxford Univ. Press, London (1961).

131.

L. R. Hermann, “Stress functions for axisymmetric, orthotropic, elasticity equations,”*AIAAT*, No. 2, 1822–1824 (1964).

132.

Hu Hai-Chang, “On the three-dimensional problems of the theory of elasticity of a transversely isotropic body,”

*Acta. Sci. Sinica.*,

**2**, No. 2, 145–151 (1953).

MathSciNet133.

Hu Hai-Chang, “On the equilibrium and vibration of a transversely isotropic elastic body,” Sci. Sinica.,**5**, No. 1, 1–18 (1956).

134.

S. Kaliski, “On a conception of basis solutions for orthotropic elastic and inelastic bodies,”

*Arch. Mech. Stos.*, No. 11, 45–60 (1959).

MathSciNet135.

A. S. Lodge, “The transformation to isotropic form of the equilibrium equations for a class of anisotropic elastic solids,”

*Quart. J. Mech. Appl. Math.*,

**8**, No. 2, 211–225 (1955).

MathSciNetCrossRef136.

Z. Mossakowska, “Stress functions of elastic bodies with three-dimensional orthotropy,”*Bull. Acad. Polon. Sci.*, No. 1, 3–6 (1955).

137.

B. Saint-Venant, “Metoire sur les divers genres d'homogenete des corps solids,”*Journ. de math. pures et appl.*,**10**, 297–349 (1865).

138.

I. Todhunter and K. Person,*A History of the Theory of Elasticity and of the Strength of Materials*, Cambridge (1893).

139.

W. Voigt,*Lerbuch der Kristallphysik (Teubner)*, Leibzig-Berlin (1928).