Skip to main content
Log in

Characterization of gas bubbles injected into molten metals under laminar flow conditions

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Velocity and volume measurements of gas bubbles injected into liquid metals under laminar flow conditions (at the orifice) have been achieved. A novel experimental approach utilizing noises generated by bubbles was used to collect the necessary data. Argon gas was bubbled through tin, lead, and copper melts, and gas bubble formation frequencies (and hence bubble sizes) were determined. It was found that the bubble size generated for a particular orifice diameter was dependent upon the magnitudes of the orifice Froude and Weber numbers. Maximum formation frequencies increased slightly with decreasing orifice diameter, and the transition point from varying to constant frequency occurred at an orifice Weber number of approximately 0.44. Velocities of gas bubbles rising through the metals were greater than those previously reported for studies in which only one bubble was in the melt at any time. Effective drag coefficients of the rising bubbles were found to agree with data previously generated in aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C D :

effective drag coefficient, 4gdb[3u2 b]−1

d b :

gas bubble diameter, cm,

d o :

orifice diameter, cm,

F :

bubble formation frequency, s−1,

g :

gravitational constant, cm s−2,

’h :

adjusted melt depth, cm,

N Reo :

orifice Reynolds number,d ovo[vg]1,

N Fro :

orifice Froude number, v2 o[gdo −1,

N weo :

orifice Weber number, dov2 opg[σ]−1,

N Reb :

bubble Reynolds number, dbub[vL]−1,

N Frb :

bubble Froude number, pgv2 b [(pl-Pg)gdb]−1,

N web :

bubble Weber number, dbu2bpL[σ]−1

N mo :

liquid phase Morton number, gμ4L[pLσ3]−1,

Qt :

gas flowrate at temperature, cm3 s−1

S b :

center to center spacing of bubbles in melt, cm

t r :

residence time of gas bubble in melt, s

u b :

gas bubble velocity in melt, cm s−1

v o :

gas velocity at orifice, cm s−1

V g :

kinematic viscosity of gas, cm2 s−1

vL :

kinematic viscosity of liquid, cm2 s−1

σ :

surface tension, dyne cm−1

References

  1. D. W. van Krevelen and P. J. Hoftijzei:Chem. Eng. Prog., 1950, vol. 46, p. 29.

    Google Scholar 

  2. I. Leibson,et al:Advanc. Chem. Eng., 1956, vol. 2, p. 296.

    CAS  Google Scholar 

  3. L. Davidson and E. H. Amick:Advanc. Chem. Eng., 1956, vol. 2, p. 337.

    CAS  Google Scholar 

  4. R.R. Hughes,et al:Chem. Eng. Prog, 1955, vol. 51, p. 557.

    CAS  Google Scholar 

  5. W. B. Hayes,et al:Advanc. Chem. Eng., 1959, vol. 5, p. 319.

    CAS  Google Scholar 

  6. S.L. Sullivan,et al:Advanc. Chem. Eng., 1964, vol. 10, p. 848.

    CAS  Google Scholar 

  7. W. Siemes:Chem. Eng. Tech., 1954, vol. 26, p. 479.

    CAS  Google Scholar 

  8. W. Siemes and J. F. Kaufmann:Chem. Eng. Sci., 1956, vol. 5, p. 127.

    Article  CAS  Google Scholar 

  9. W. Siemes and K. Günther:Chem. Eng. Tech., 1956, vol. 28, p. 389.

    CAS  Google Scholar 

  10. J. F. Davidson and B. 0. G. Schüler:Trans. Inst. Chem. Eng., 1960, vol. 38, p. 144.

    CAS  Google Scholar 

  11. J. F. Davidson and B. 0. G. Schüler:Trans. Inst. Chem. Eng., 1960, vol. 38, p. 335.

    CAS  Google Scholar 

  12. R. Kumar,et al:Chem. Eng. Sel, 1969, vol. 24, p. 749.

    Article  Google Scholar 

  13. R. D. Lanauze and I. J. Harris:Chem. Eng. Sci., 1974, vol. 29, p. 1663.

    Article  CAS  Google Scholar 

  14. R. D. Lanauze and I. J. Harrison:Chem. Eng. Sci., 1972, vol. 27, p. 2102.

    Article  CAS  Google Scholar 

  15. M. Sano and K. Mori:Tetsu-to-Hagane, 1974, vol. 60, p. 348.

    Google Scholar 

  16. J. Szekely and N. J. Themelis:Rate Phenomena in Process Metallurgy, pp. 368, 688–92, John Wiley and Sons, New York, 1971.

    Google Scholar 

  17. W. L. Haberman and R.K.Morton:David Taylor Model Basin Rep., U.S. Dept. of Naval Research, No. 802,1953.

  18. F. N. Peebles and H. J. Garber:Chem. Eng. Prog., 1953, vol. 39, p. 88.

    Google Scholar 

  19. R. A. Hartunian and W. R. Sears:J. FluidMech., 1957, vol. 3, p. 27.

    Article  Google Scholar 

  20. F. H. Garner and D. Hammerton:Chem. Eng. Sci, 1954, vol. 3, p. 1.

    Article  CAS  Google Scholar 

  21. R. M. Davies and G. I. Taylor:Proc. Roy. Soc, London, 1950, vol. 200, Ser. A, p. 375.

    Article  Google Scholar 

  22. S. Uno and R. C. Kintner:Advanc. Chem. Eng., 1956, vol. 2, p. 420.

    CAS  Google Scholar 

  23. W. G. Davenport,et al:J. Iron SteelInst., 1967, vol. 205, p. 1034.

    CAS  Google Scholar 

  24. M. Paneni and W. G. Davenport:Trans. TMS-AIME, 1969, vol. 245, p. 735.

    CAS  Google Scholar 

  25. E. N. Sieder and G. E. Täte:Ind. Eng. Chem., 1936, vol. 28, p. 1429.

    Article  CAS  Google Scholar 

  26. J.H. Perry:Chemical Engineers Handbook, 4th ed., pp. 10–10 to 10–13, McGraw Hill Book Co., New York, 1963.

    Google Scholar 

  27. D. H. Napier:GasAbsorp. Working Party Rep. No. 10, Imperial College, London, March, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

R. J. ANDREINI, Formerly Graduate Student, Michigan Technological University,

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreini, R.J., Foster, J.S. & Callen, R.W. Characterization of gas bubbles injected into molten metals under laminar flow conditions. Metall Trans B 8, 625–631 (1977). https://doi.org/10.1007/BF02669340

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669340

Keywords

Navigation