Skip to main content
Log in

Molecular alterations in the pathogenesis of endometrial adenocarcinoma. Therapeutic implications

  • Educational Series
  • Blue Series
  • Published:
Clinical & Translational Oncology Aims and scope Submit manuscript

Summary

Molecular genetic evidence indicates that endometrial carcinoma likely develops as the result of a multistep process of oncogene activation and tumor suppressor gene inactivation. These molecular alterations appear to be specific for Type I (endometrioid) and Type II (non endometrioid) cancers. Type I cancers are characterized by mutation of PTEN, KRAS2, defects in DNA mismatch repair, as evidenced by the microsatellite instability phenotype, and a near diploid karyotype. Type II cancers often contain mutations of TP53 and Her-2/neu and are usually nondiploid. The clinical value of many of these molecular markers is now being tested and it may help to refine diagnosis and establish an accurate prognosis. Furthermore, some of these tumor biomarkers constitute the targets for emerging therapies. Transtuzumab against Her-2/neu and bevacizumab against VEGF overexpressing carcinomas are among the promising novel treatments. Additional translational research is needed to identify molecular and genetic alterations with potential for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Potischman N, Hoover RN, Brinton LA, et al. Case-control study of endogenous steroid hormones and endometrial cancer. J Natl Cancer Inst. 1996;88:1127–31.

    Article  PubMed  CAS  Google Scholar 

  2. Lax SF. Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch. 2004;444: 213–23.

    Article  PubMed  CAS  Google Scholar 

  3. Pral J. Prognostic parameters of endometrial carcinoma. Hum Pathol. 2004;35:649–62.

    Article  Google Scholar 

  4. Herrington CS. What we could do now: molecular pathology of gynaecological cancer. J Clin Pathol: Mol Pathol. 2001;54: 222–4.

    Article  CAS  Google Scholar 

  5. Ioachin E. Immunohistochemical tumour markers in endometrial ercinoma. Eur J Gyneacol Oncol. 2005;26:563–71.

    Google Scholar 

  6. Creasman WT. Prognostic significance of hormone receptors in endometrial cancer. Cancer. 1993;71:1467–70.

    PubMed  CAS  Google Scholar 

  7. Halperin R, Zehavi S, Habler L, et al. Comparative immunohistochemical study of endometrioid and serous papillary carcinoma of endometrium. Eur J Gynaecol Oncol. 2001;22:122–6.

    PubMed  CAS  Google Scholar 

  8. Mutter GL, Lin MC, Fitzgerald JT, et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst. 2000;92:924–30.

    Article  PubMed  CAS  Google Scholar 

  9. Salvesen HB, Stefansson I, Kretzschmar EI, et al. Significance of PTEN alterations in endometrial carcinoma: A population-based study of mutations, promoter methylation and PTEN protein expression. Int J Oncol. 2004;25:1615–23.

    PubMed  CAS  Google Scholar 

  10. Risinger JL, Berchuck A, Kohler M, et al. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 1993; 53:5100–3.

    PubMed  CAS  Google Scholar 

  11. Ichikawa Y, Lemon SJ, Wang S, et al. Microsatellites instability and expression of hMSH2 or hMLH1 in normal and malignant endometrial and ovarian epithelium in hereditary nonpolyposis colorectal cancer family members. Cancer Genet Cytogenet. 1999;112:2–8.

    Article  PubMed  CAS  Google Scholar 

  12. Wijnen JT, Vasen HF, Khan PM, et al. Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N Engl J Med. 1998;339: 511–518.

    Article  PubMed  CAS  Google Scholar 

  13. Goodfellow PJ, Buttin BM, Herzog TJ, et al. Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. PNAS. 2003;100:5908–13.

    Article  PubMed  CAS  Google Scholar 

  14. Broaddus RR, Lynch HT, Chen LM, et al. Pathologic features of endometrial carcinoma associated with HNPCC: a comparison with sporadic endometrial carcinoma. Cancer. 2006;106:87–94.

    Article  PubMed  CAS  Google Scholar 

  15. Miturski R, Bogusiewicz M, Ciotta C, et al. Mismatch repair genes and microsatellite instability as molecular markers for gynaecological cancer detection. Exp Biol Med. 2002;227:579–86.

    CAS  Google Scholar 

  16. MacDonald ND, Salvesen HB, Ryan A, et al. Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res. 2000;60:1750–2.

    PubMed  CAS  Google Scholar 

  17. Pijnenborg JM, Dam-de Veen GC, de Haan J, et al. Defective mismatch repair and the development of recurrent endometrial carcinoma. Gynecol Oncol. 2004; 94:550–9.

    Article  PubMed  CAS  Google Scholar 

  18. Levine RL, Cargile CB, Blazes MS, et al. PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res. 1998;58:5254–8.

    Google Scholar 

  19. Vousden KH. Activation of the p53 tumor suppressor protein. Biochim Biophys Acta. 2002;1602:47–59.

    PubMed  CAS  Google Scholar 

  20. Tashiro H, Isacson C, Levine R, et al. p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am J Pathol. 1997;150:177–85.

    PubMed  CAS  Google Scholar 

  21. Lax SF, Kendall B, Tashiro H, Slebos RJ, Hedrick L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer. 2000; 88:814–24.

    Article  PubMed  CAS  Google Scholar 

  22. Ragni N, Ferrero S, Prefumo F, et al. The association between p53 expression, stage and histological features in endometrial cancer. Eur J Obstet Gynecol Reprod Biol. 2005;125:111–6.

    Article  CAS  Google Scholar 

  23. Geisler JP, Geisler HE, Wiermann MC, et al. p53 expression as a prognostic indicator of 5-year survival in endometrial cancer. Gynecol Oncol. 1999;74:468–71.

    Article  PubMed  CAS  Google Scholar 

  24. Pijnenborg JM, van de Broek L, Dam de Veen GC, et al. TP53 overexpression in recurrent endometrial carcinoma. Gynecol Oncol. 2006;100:597–404.

    Article  CAS  Google Scholar 

  25. Erdem O, Erdem M, Dursum A, et al. Angiogenesis, p53, and bcl-2 expression as prognostic indicators in endometrial cancer: comparison with tradicional clinicopathologic variables. Int J Gynecol Pathol. 2003;22:254–60.

    Article  PubMed  Google Scholar 

  26. Ohkouchi T, Sakuragi N, Watari H, et al. Prognostic significance of Bcl-2, p55 overexpression, and lymph node metastasis in surgically staged endometrial carcinoma. Am J Obstet Gynecol. 2002;187:353–9.

    Article  PubMed  CAS  Google Scholar 

  27. Saffari B, Bernstein L, Hong DC, et al. Association of p53 mutations and a codon 72 single nucleotide polymorphism with lower overall survival and responsiveness to adjuvant radiotherapy in endometrioid endometrial carcinomas. Int J Gynecol Cancer. 2005;15:952–63.

    Article  PubMed  CAS  Google Scholar 

  28. Alkushi A, Lim P, Coldman A, et al. Interpretation of p53 immunoreactivity in endometrial carcinoma: establishing a clinically relevant cut-off level. Int J Gynecol Pathol. 2004;25:129–37.

    Article  Google Scholar 

  29. McCluggage WG, Connolly LE, McGregor G, et al. A strategy for defining biologically relevant levels of p53 protein expression in clinical samples with reference to endometrial neoplasia. Int J Gynecol Pathol. 2005;24:507–12.

    Article  Google Scholar 

  30. Ellison DA, Maygarden SJ. Quantitative DNA analysis of fresh solid tumors by flow and image cytometric methods: a comparison using the Roche Pathology Workstation Image Analyzer. Mod Pathol. 1995;8:275–81.

    PubMed  CAS  Google Scholar 

  31. Evans MP, Podratz KC. Endometrial neoplasia: prognostic significance of ploidy status. Clin Obstet Gynecol. 1996;59:696–706.

    Article  Google Scholar 

  32. Silverman MB, Roche PC, Kho RM, et al. Molecular and cytogenetic risk assessment in endometrial cancer. Gynecol Oncol. 2000;77:1–7.

    Article  PubMed  CAS  Google Scholar 

  33. Wimberger P, Hillemanns P, Kapsner T, et al. Evaluation of prognostic factors following flow-cytometric DNA analysis after cytokeratin labelling. II. Cervical and endometrial cancer. Anal Cell Pathol. 2002; 24:147–58.

    PubMed  CAS  Google Scholar 

  34. Mariani A, Sebo TJ, Katzmann JA, et al. Pretreatment assessment of prognostic indicators in endometrial cancer. Am J Obstet Gynecol. 2000, p. 1535–44.

  35. Mariani L, Conti L, Antenucci A, et al. Predictive value of cell kinetics in endometrial adenocarcinoma. Anticancer Res. 2000;20:3569–74.

    PubMed  CAS  Google Scholar 

  36. Konski A, Domenico D, Tyrkus M, et al. Prognostic characteristics of surgical stage I endometrial adenocarcinoma. Int J Radiat Oncol Biol Phys. 1996;35:935–40.

    Article  PubMed  CAS  Google Scholar 

  37. Orbo A, Rydningen M, Straume B, Lysne S. Significance of morphometric, DNA cytometric features, and other prognostic markers on survival of endometrial cancer patients in northern Norway, Int J Gynecol Cancer. 2002;12:49–56.

    Article  PubMed  CAS  Google Scholar 

  38. Lundgren C, Auer G, Frankendal B, et al. Nuclear DNA content, proliferative activity, and p55 expression related to clinical and histopahologic features in endometrial carcinoma. Int J Gynecol Cancer. 2002; 12:110–8.

    Article  PubMed  Google Scholar 

  39. Baak JP, Suijders W, van Dierman B, et al. Prospective multicenter validation confirms the prognostic superiority of the endometrial carcinoma prognostic index in International Federation of Gynecology and Obstetrics stage 1 and 2 endometrial carcinoma. J Clin Oncol. 2003. p. 4214–21.

  40. Santala M, Talvensaari-Mattila A. DNA ploidy is an independent prognostic indicador of overall survival in stage 1 endometrial endometrioid adenocarcinoma. Anticancer Res. 2005;23:5191–6.

    Google Scholar 

  41. Zaino RJ, Davis ATL, Ohlsson-Wilhelm BM, Brunetto VL. DNA content is an independent prognostic indicator in endometrial adenocarcinoma: a Gynecologic Oncology Group study. Int J Gynecol Pathol. 1998;17:312–9.

    Article  PubMed  CAS  Google Scholar 

  42. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of HER-2/neu oncogene. Science. 1987;235: 177–82.

    Article  PubMed  CAS  Google Scholar 

  43. Hellstrom I, Goodman G, Pullman J, et al. Overexpression of HER-2/neu in ovarian carcinomas. Cancer Res. 2001;61:2420–3.

    PubMed  CAS  Google Scholar 

  44. Rolitsky CD, Theil KS, McGaughy VR, et al. HER-2/neu amplification and overexpression in endometrial carcinoma. Int J Gynecol Pathol. 1999;18:138–43.

    Article  PubMed  CAS  Google Scholar 

  45. Santin AD, Bellone S, Van Stedum S, et al. Determination of HER2/neu status in uterine serous papillary carcinoma: Comparative analysis of immunohistochemistry, and fluorescence in situ hybridisation. Gynecol Oncol. 2005;98:24–30.

    Article  PubMed  CAS  Google Scholar 

  46. Saffari B, Jones LA, el-Naggar A, et al. Amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: correlation with overall survival. Cancer Res. 1995;55:5695–8.

    Google Scholar 

  47. Kohlberger P, Loesch A, Koelbl B, et al. Prognostic value of immunohistochemically detected HER-2/neu oncoprotein in endometrial cancer. Cancer Lett. 1996;98: 151–5.

    Article  PubMed  CAS  Google Scholar 

  48. Riben MW, Malfetano JH, Nazeer T, et al. Identification of HER-2/neu oncogene amplification by fluorescence in situ hybridization in stage I endometrial carcinoma. Mod Pathol. 1997;10:823–31.

    PubMed  CAS  Google Scholar 

  49. Rasty G, Murray R, Lu L et al. Expression of HER-2/neu oncogene in normal, hyperplastic, and malignant endometrium. Ann Clin Lab Sci. 1998;28:138–43.

    PubMed  CAS  Google Scholar 

  50. Cianciulli AM, Guadagni F, Marzano R, et al. HER-2/neu oncogene amplification and chromosome 17 aneusomy in endometrial carcinoma: correlation with oncoprotein expression and conventional pathological parameters. J Exp Clin Cancer Res. 2003; 22:265–71.

    PubMed  CAS  Google Scholar 

  51. Santin AD, Bellone S, Gokden M, et al. Overexpression of HER-2/neu in uterine serous papillary cancer. Clin Cancer Res. 2002;8:1271–9.

    PubMed  CAS  Google Scholar 

  52. Slomovitz BM, Broaddus RR, Burke TW et al. Her-2/neu overexpression and 3126 amplification in uterine papillary serous carcinoma. J Clin Oncol. 2004;22:3132.

    Article  CAS  Google Scholar 

  53. Mariani A, Sebo TH, Katzmann JA, et al. HER-2/neu overexpression and hormone dependency in endometrial cancer: analysis of cohort and review of literature. Anticancer Res. 2005;25:2921–7.

    PubMed  CAS  Google Scholar 

  54. Backe J, Gassel AM, Krebs S, et al. Immunohistochemically detected HER-2/neu expression and prognosis in endometrial carcinoma. Arch Gynecol Obstet. 1997;259:189–95.

    PubMed  CAS  Google Scholar 

  55. Williams JA, Wang ZR, Parrish RS, et al. Fluorescence in situ hybridization analysis of HER-2/neu, c-myc, and p53 in endometrial cancer. Exp Mol Pathol. 1999;67: 135–43.

    Article  PubMed  CAS  Google Scholar 

  56. Sivridis E. Angiogenesis and endometrial cancer. Anticancer Res. 2001;21:4383–8.

    PubMed  CAS  Google Scholar 

  57. Guidi AJ, Abu-Jawdeh G, Tognazzi K, Dvorak HF, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer. 1996;78: 454–60.

    Article  PubMed  CAS  Google Scholar 

  58. Fujimoto J, Ichigo S, Hirose R, et al. Expression pression of vascular endothelial growth factor (VEGF) and its mRNA in uterine endometrial cancers. Cancer Lett. 1998; 134:15–22.

    Article  PubMed  CAS  Google Scholar 

  59. Seki N, Kodama J, Hongo A, et al. Vascular endotelial growth factor and platelet-derived endothelial cell growth factor expression are implicated in the angiogenesis of endometrial cancer. Eur J Cancer. 2000;36:68–73.

    Article  PubMed  CAS  Google Scholar 

  60. Mazurek A, Pierzynski P, Kuc P, et al. Evaluation of angiogenesis, p-53 tissue protein expression and serum VEGF in patients with endometrial cancer. Neoplasma. 2004;51:193–7.

    PubMed  CAS  Google Scholar 

  61. Salvesen HB, Iversen OE, Akslen LA, Prognostic significance of angiogenesis and Ki-67, p53, and p21 expression: a population-based endometrial carcinoma study. J Clin Oncol. 1999;17:1382–90.

    PubMed  CAS  Google Scholar 

  62. Ozuysal S, Bilgin T, Ozan H, et al. Angiogenesis in endometrial carcinoma: correlation with survival and clinicopathologic risk factors. Gynecol Onstet Invest. 2005; 55:175–7.

    Google Scholar 

  63. Ozalp S, Yalcin OT, Acikalin M, et al. Microvessel density (MVD) as a prognosticator in endometrial carcinoma. Eur J Gynaecol Oncol. 2003;24:305–8.

    PubMed  CAS  Google Scholar 

  64. Giatromanolaki A, Sivridis E, Koukourakis MI, et al. Intratumoral angiogenesis: a new prognostic indicador for stage 1 endometrial adenocarcinomas? Oncol Res. 1999;11:205–12.

    PubMed  CAS  Google Scholar 

  65. Sanseverino F, Santopietro R, Torricelli M, et al. PRb2/p130 and VEGF expression in endometrial carcinoma in relation to angiogenesis and histopathologic tumor grade. Cancer Biol The. 2006;5:84–8.

    Article  CAS  Google Scholar 

  66. Fine BA, Valente PT, Feinstein GI, Dey T. VEGF, fit-1, and KDR/flk-1 as prognostic indicators in endometrial carcinoma. Gynecol Oncol. 2000;76:33–9.

    Article  PubMed  CAS  Google Scholar 

  67. Toyoki H, Fujimoto F, Sato E, et al. Clinical implications of expresion of cyclooxigenase-2 related to angiogenesis in uterine endometrial cancers. Ann Oncol. 2005;16:51–5.

    Article  PubMed  CAS  Google Scholar 

  68. Fujiwaki R, Lida K, Kanasaki H, et al. Cyclooxygenase-2 expression in endometrial cancer: correlation with microvessel count and expression of vascular endothelial growth factor and thymidine phosphorylase. Human Pathol. 2002;35: 213–9.

    Article  CAS  Google Scholar 

  69. Ferrandina G, Legge F, Ranelletti FO, et al. Cyclooxygenase-2 expression in endometrial carcinoma: correlation with clinicopathologic parameters and clinical outcome. Cancer. 2002;95:801–7.

    Article  PubMed  CAS  Google Scholar 

  70. Maxwell GL, Risinger JI, Álvarez AA, Barret JC, Berechuck A. Favorable survival associated with microsatellite instability in endometrioid cancerx. Obstet Gynecol. 2001;84:209–17.

    Google Scholar 

  71. Saegusa M, Hashimura M, Yoshida T, et al. Beta-catenin mutations and aberrant nuclear expresión during endometrial tumorigenesis. Br J Cancer. 2001;84:209–17.

    Article  PubMed  CAS  Google Scholar 

  72. Lax SF, Kendaall B, Tashiro H, Slebos RJ, Hedrick L. The frequency of p53, K-ras mutations and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence o distinct molecular genetic pathways. Cancer. 2000; 88:814–24.

    Article  PubMed  CAS  Google Scholar 

  73. Lax SF, Pizer ES, Ronnett BM, Kurman RJ. Clear cell carcinoma of the endometrium is charactrized by a distinctive profile of p53, Ki-67, estrogen and progesterone receptor expression. Hum Pathol. 1998;29:551–8.

    Article  PubMed  CAS  Google Scholar 

  74. Khalifa MA, Mannel RS, Haraway SD, Walker J, Mi KW. Expression of EGFR, HER-2/neu, P53, and PCNA in endometrioid, serous papillary, and clear cell endometrial adenocarcinomas. Gynecol. Oncol. 1994;53:84–92.

    Article  PubMed  CAS  Google Scholar 

  75. Risinger JI, Maxwell GL, Chandramouli GV, et al. Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res. 2003;63:6–11.

    PubMed  CAS  Google Scholar 

  76. Pallarés J, Martinez-Guitarte JL, Dolcet X, et al. Survivin expression in endometrial carcinoma: a tissue microarray study with correlation with PTEN and STAT-3. Int J Gynecol Pathol. 2003;24:247–53.

    Article  Google Scholar 

  77. Santin AD, Zhan F, Cane S, et al. Gene expression fingerprint of uterine serous papillary carcinoma: identification of novel molecular markers for uterine serous cancer diagnosis and therapy. Br J Cancer. 2005;92:1561–73.

    Article  PubMed  CAS  Google Scholar 

  78. Salvesen HB, Akslen LA. Molecular pathogenesis and prognostic factors in endometrial carcinoma. APMIS. 2002;110: 673–89.

    Article  PubMed  CAS  Google Scholar 

  79. Von Minckwitz G, Loibl S, Brunnert K, et al. Adjuvant endocrine treatment with medroxyprogesterone acetate or tamoxifen in stage I and II endometrial cancer-a multi-centre, open, controlled prospectively randomised trial. Eur J Ca. 2002; 38:2265–71.

    Article  Google Scholar 

  80. Ota T, Yoshida M, Kimura M, Kinoshita K. Clinicopathologic study of uterine endometrial carcinoma in young women aged 40 years and younger. Int J Gynecol Cancer 2005;15:657–62.

    Article  PubMed  CAS  Google Scholar 

  81. Barakat RR, Bundy BN, Spirtos NM, Bell J, Mannel RS. Randomized double-blind trial of estrogen replacement therapy versus placebo in stage I or II endometrial cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2006;24:587–92.

    Article  PubMed  CAS  Google Scholar 

  82. Nygren P, Sorbye H, Osterlund P, Pfeiffer P, Targeted drugs in metastatic colorectal cancer with special emphasis on guidelines for the use of bevacizumab and cetuximab. Acta Oncol. 2005;44:203–17.

    Article  PubMed  CAS  Google Scholar 

  83. Tsujii M, Kawano S, Tsuji S et al. Cyclo-oxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;29: 705–16.

    Article  Google Scholar 

  84. Mujoo K, Maneval DC, Anderson SC, Gutterman JU. Adenoviral mediated p53 tumor suppressor gene therapy of human ovarian carcinoma. Oncogene. 1996;12:1617–25.

    PubMed  CAS  Google Scholar 

  85. Ramondetta L, Mills GB, Burke TW, Wolf JK. Adenovirus-mediated expression of p55 or p21 in a papillary serous endometrial carcinoma cell line (SPEC-2) results in both growth inhibition and apoptotic cell death: Potential application of gene therapy to endometrial cancer. Clin Cancer Res. 2000;6:278–84.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Cerezo MD.

Additional information

Supported by an unrestricted educational grant by Bristol-Myers Squibb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerezo, L., Cárdenes, H. & Michael, H. Molecular alterations in the pathogenesis of endometrial adenocarcinoma. Therapeutic implications. Clin Transl Oncol 8, 231–241 (2006). https://doi.org/10.1007/BF02664933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664933

Key words

Navigation