Skip to main content
Log in

Enhanced/suppressed interdiffusion of InGaAs-GaAs-AlGaAs strained layers by controlling impurities and gallium vacancies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The interdiffusion of In and Ga at an InGaAs-GaAs interface subjected to different annealing temperatures, times, and environments is demonstrated. The interdiffusion coefficients and activation energies are determined by correlating the shift in the photoluminescence peaks with the calculated quantum well transition energies based on an error function composition profile. The results indicate that a higher In composition InxGa1-xGaAs single quantum well (SQW) leads to a higher interdiffusion coefficient of In and Ga in an As overpressure annealing condition. Also, As overpressure increases the interdiffusion, whereas Ga overpressure reduces the interdiffusion. The thermal activation energies for different In composition InGaAs-GaAs SQW’s (x = 0.057, 0.10, 0.15) range from 3.3 to 2.6 eV for an As overpressure environment and from 3 to 2.23 eV for the Ga overpressure situation. With respect to impurity induced disordering by Zn using a Ga or As overpressure significantly effects the depth of the Zn diffusion front but significant mixing does occur in either case when the impurity front reaches the quantum well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. W. Matthews, A. E. Blakeslee, J. Cryst. Growth.27, 118 (1974);29, 273 (1975);32, 265 (1976).

    CAS  Google Scholar 

  2. J. W. Matthews, A. E. Blakeslee and S. Mader, Thin Solid Films33, 253 (1976).

    Article  CAS  Google Scholar 

  3. G. C. Osbourn, J. Appl. Phys.53, 1586 (1982).

    Article  CAS  Google Scholar 

  4. G. C. Osbourn, J. Vac. Sci. Technol.21, 469 (1982).

    Article  CAS  Google Scholar 

  5. L. L. Chang and A. Koma, Appl. Phys. Lett.29, 138 (1976).

    Article  CAS  Google Scholar 

  6. W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus and J. Bardeen, Appl. Phys. Lett.38, 776 (1981).

    Article  CAS  Google Scholar 

  7. W. D. Laidig and N. Holonyak, Jr., J. Electron. Mater.11, 1 (1982).

    CAS  Google Scholar 

  8. D. G. Deppe, L. J. Guido and N. Holonyak, Jr., MRS meeting, Reno Nevada (1988).

  9. K. Y. Hsieh, Y. C. Lo, J. H. Lee and R. M. Kolbas, 1988 Int. Symp. GaAs and Related Compounds, Atlanta, Georgia (Inst. Phys. Conf. Ser. NO. 96 p393).

  10. M. D. Camras, N. Holonyak, Jr., K. Hess, M. J. Ludowise, W. T. Dietze and C. R. Lewis, Appl. Phys. Lett.42, 185 (1983).

    Article  CAS  Google Scholar 

  11. J. S. Major, Jr., L. J. Guido, K. C. Hsieh, N. Holonyak, Jr., W. Stutius, P. Gavrilovic and J. E. Willams, Appl. Phys. Lett.54 913 (1989).

    Article  CAS  Google Scholar 

  12. K.J. Beernink, P. K. York, J. J. Coleman, R. G. Waters, J. Kim and C. M. Wayman, Appl. Phys. Lett.55, 2167 (1989).

    Article  CAS  Google Scholar 

  13. J. S. Major, Jr., L. J. Guido, N. Holonyak, Jr., K. C. Hsieh, E. J. Vesely, D. W. Nam, D. C. Hall, J. E. Baker, P. Gavrilovic, K. Meehan, W. Stutius and J. E. Williams, J. Electron. Mater.19, 59 (1990).

    CAS  Google Scholar 

  14. J. S. Major, Jr., D. C. Hall, L. J. Guido, N. Holonyak, Jr., P. Gavrilovic, K. Meehan, J. E. Williams and W. Stutius, Appl. Phys. Lett.55, 271 (1989).

    Article  CAS  Google Scholar 

  15. D. F. Welch, W. Streifer, C. F. Schaus, S. Sun and P. L. Gourley, Appl. Phys. Lett.56, 10 (1990).

    Article  CAS  Google Scholar 

  16. J. S. Major, Jr., W. E. Piano, A. R. Sugg, D. C. Hall, N. Holonyak, Jr. and K. C. Hsieh, Appl. Phys. Lett.56, 105 (1990).

    Article  CAS  Google Scholar 

  17. W. Stutius, P. Gavrilovic, J. E. Williams, K. Meehan and J. H. Zarrabi, Electron. Lett.24, 1493 (1988).

    Article  Google Scholar 

  18. M. C. Joncour, M. N. Charasse and J. Burgeat, J. Appl. Phys. 58, 3373 (1985).

    Article  CAS  Google Scholar 

  19. J. Crank, The Mathematics of Diffusion (Oxford University, London, 1957).

    Google Scholar 

  20. J. Cibert, P. M. Petroff, D. J. Werder, S. J. Pearton, A. C. Gossard, and J. H. English, Appl. Phys. Lett.49, 223 (1986).

    Article  CAS  Google Scholar 

  21. N. G. Anderson, Ph.D. dissertation. North Carolina State University (1988).

  22. Y. Marzin, M. N. Charasse and B. Sermage, Phys. Rev.B31, 8298 (1985).

    Google Scholar 

  23. D. G. Deppe and N. Holonyak, Jr., J. Appl. Phys.64, R93 (1988).

    Article  CAS  Google Scholar 

  24. W. D. Laidig, J. W. Lee, P. K. Chiang, L. W. Simpson and S. M. Bedair, J. Appl. Phys.54, 6382 (1983).

    Article  CAS  Google Scholar 

  25. R. L. Longini, Solid St. Electron5, 127 (1962).

    Article  CAS  Google Scholar 

  26. K. K. Shih, J. W. Allen and G. L. Pearson, J. Phys. Chem. Solids129, 379 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, K.Y., Hwang, Y.L., Lee, J.H. et al. Enhanced/suppressed interdiffusion of InGaAs-GaAs-AlGaAs strained layers by controlling impurities and gallium vacancies. J. Electron. Mater. 19, 1417–1423 (1990). https://doi.org/10.1007/BF02662832

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662832

Key words

Navigation