Skip to main content
Log in

The effect of grain boundary chemistry on Intergranular stress corrosion cracking of Ni-Cr-Fe alloys in 50 Pct NaOH at 140 °C

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The role of chromium, carbon, chromium carbides, and phosphorus on the intergranular stress corrosion cracking (IGSCC) resistance of Ni-Cr-Fe alloys in 50 pct NaOH at 140 °C is studied using controlled-purity alloys. The effect of carbon is studied using heats in which the carbon level is varied between 0.002 and 0.063 wt pct while the Cr level is fixed at 16.8 wt pct. The effect of Cr is studied using alloys with Cr concentrations between 5 and 30 wt pct. The effect of grain boundary Cr and C together is studied by heat-treating the nominal alloy composition of Ni-16Cr-9Fe-0.035C, and the effect of P is studied using a high-purity, P-doped alloy and a carbon-containing, P-doped alloy. Constant extension rate tensile (CERT) results show that the crack depth increases with decreasing alloy Cr content and increasing alloy C content. Crack- ing severity also correlates inversely with thermal treatment time at 700 °C, during which the grain boundary Cr content rises and the grain boundary C content falls. Phosphorus is found to have a slightly beneficial effect on IG cracking susceptibility. Potentiodynamic polarization and potentiostatic current decay experiments confirm that Cr depletion or grain boundary C enhances the dissolution at the grain boundary. Results support a film rupture-anodic dissolution model in which Cr depletion or grain boundary C (independently or additively) enhances dissolution of nickel from the grain boundary region and leads to increased IG cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Serra: NP-2114-SR, Electric Power Research Institute, Palo Alto, CA, Nov. 1981.

  2. R. Bandy and D. van Rooyen:Proc. 9th Int. Congress on Metallic Corrosion, National Research Council, Toronto, CanActa, 1984, vol. 2, pp. 202–09.

    Google Scholar 

  3. G.S. Was:Corrosion, 1990, vol. 46, pp. 319–30.

    CAS  Google Scholar 

  4. N. Pessel, G.P. Airey, and B.P. Lingenfelter:Corrosion, 1979, vol. 356, pp. 100–07.

    Google Scholar 

  5. J.R. Crum:Corrosion, 1986, vol. 42, pp. 368–72.

    CAS  Google Scholar 

  6. K.H. Lee, G. Cragnolino, and D.D. Macdonald:Corrosion, 1985, vol. 41, pp. 540–53.

    CAS  Google Scholar 

  7. J.R. Crum: inCorrosion 81, National Association of Corrosion Engineers, Houston, TX, 1981, Paper 24.

    Google Scholar 

  8. V.B. Rajan, J.K. Sung, and G.S. Was:Proc. 3rd Int. Symp. on Environmental DegrActation of Materials in Nuclear Power Systems-Water Reactors, TMS, Warrendale, PA, 1987, pp. 545–50.

    Google Scholar 

  9. G.P. Airey:Corrosion, 1980, vol. 36, pp. 9–17.

    CAS  Google Scholar 

  10. J.R. Crum:Corrosion, 1982, vol. 38, pp. 40–45.

    CAS  Google Scholar 

  11. A.R. McIlree, H.T. Michels, and P.E. Morris:Corrosion, 1975, vol. 31, pp. 441–48.

    CAS  Google Scholar 

  12. A.R. Mcllree and H.T. Michels:Corrosion, 1977, vol. 33, p. 60.

    Google Scholar 

  13. R.S. Pathania:Corrosion, 1978, vol. 34, pp. 149–56.

    CAS  Google Scholar 

  14. G.S. Was and R.M. Kruger:Acta Metall., 1985, vol. 33, pp. 841–54.

    Article  CAS  Google Scholar 

  15. G.S. Was:Computer Simulation of Microstructure Evolution, TMS- AIME, Warrendale, PA, 1986, pp. 151–70.

    Google Scholar 

  16. G.S. Was and J.R. Martin:Metall. Trans. A, 1985, vol. 16A, pp. 349–60.

    CAS  Google Scholar 

  17. X. Liu, J. Shao, G. Cragnolino, and D.D. Macdonald:Proc. Corrosion of Nickel-Base Alloys, American Nuclear Society, La Grange Park, IL, 1985, pp. 211–26.

    Google Scholar 

  18. T. Yonezawa, K. Onimura, N. Sasaguri, T. Kusakabe, H. Nagano, K. Yamanaka, T. Minami, and M. Inoue:Proc. 2nd Int. Symp. on Environmental DegrActation of Materials in Nuclear Power Systems-Water Reactors, American Nuclear Society, La Grange Park, IL, 1986, pp. 593–600.

    Google Scholar 

  19. K. Hashimoto and K. Asami:Corros. Sci., 1979, vol. 19, p. 427.

    Article  CAS  Google Scholar 

  20. K. Yamanaka and J. Murayama:Proc. 4th Int. Symp. on Environmental DegrActation of Materials in Nuclear Power Systems-Water Reactors, National Association of Corrosion Engineers, Houston, TX, 1991, pp. 5–96-5-106.

    Google Scholar 

  21. H. Nagano, K. Yamanaka, K. Tokimasa, and H. Kiyuki: inEnvironment-Induced Cracking of Metals, R. Gangloff and M.B. Ives, eds., National Association of Corrosion Engineers, Houston, TX, 1990, pp. 407–14.

    Google Scholar 

  22. R.M. Kruger, G.S. Was, J.F. Mansfield, and J.R. Martin:Acta Metall., 1988, vol. 36, pp. 3163–76.

    Article  CAS  Google Scholar 

  23. R.M. Kruger and G.S. Was:Metall. Trans. A, 1988, vol. 19A, pp. 2555–66.

    CAS  Google Scholar 

  24. G.P. Airey:Corrosion, 1979, vol. 35, pp. 129–36.

    CAS  Google Scholar 

  25. M. Da Cunha Delo, D. Colin, M. Cornet, and Ph. Berge:7th Int. Symp. on Metallic Corrosion, ABRACO, Rio de Janeiro, 1978, p. 991.

    Google Scholar 

  26. L. Karlsson and H. Norden:Acta Metall., 1988, vol. 36, pp. 35–48.

    Article  CAS  Google Scholar 

  27. S. Suzuki, M. Obata, K. Abiko, and H. Kimura:Scripta Metall., 1983, vol. 17, pp. 1325–28.

    Article  CAS  Google Scholar 

  28. K. Yamanaka, K. Tokimasa, H. Miyuki, and H. Nagano:Proc. Intergranular Corrosion and Primary Water Intergranular Stress Corrosion Cracking Mechanisms, Washington, DC, 1987.

  29. G. Cragnolino and D.D. Macdonald: EPRI Report NP-3998M, Electric Power Research Institute, Palo Alto, CA, 1985.

    Google Scholar 

  30. R.J. Jacko: EPRI Report NP-4478, Electric Power Research Institute, Palo Alto, CA, 1986, p. C3–1.

    Google Scholar 

  31. S.M. Bruemmer and C.H. Heneger, Jr.:Proc. 2nd Int. Symp. on Environmental DegrActation of Materials in Nuclear Power Systems-Water Reactors, American Nuclear Society, La Grange Park, IL, 1986, pp. 293–300.

    Google Scholar 

  32. D. Lee and D.A. Vermilyea:Metall. Trans., 1971, vol. 2, pp. 2565–71.

    Article  CAS  Google Scholar 

  33. J.K. Sung and G.S. Was:Corrosion, 1992, vol. 47 (11), pp. 824–34.

    Google Scholar 

  34. J.M. Cookson, R.D. Carter, D.L. Damcott, M. Atzmon, and G.S. Was:Proc. 5th Int. Symp. on Environmental DegrActation of Materials in Nuclear Power Systems-Water Reactors, American Nuclear Society, La Grange, IL, 1992, pp. 806–13.

    Google Scholar 

  35. M. Fukuya, K. Nakata, and A. Horie:Proc. 5th Int. Symp. on Environmental DegrActation of Materials in Nuclear Power Systems-Water Reactors, American Nuclear Society, La Grange Park, IL, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, J.K., Koch, J., Angeliu, T. et al. The effect of grain boundary chemistry on Intergranular stress corrosion cracking of Ni-Cr-Fe alloys in 50 Pct NaOH at 140 °C. Metall Trans A 23, 2887–2904 (1992). https://doi.org/10.1007/BF02651767

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651767

Keywords

Navigation