Skip to main content
Log in

Ostwald ripening in a system with a high volume fraction of coarsening phase

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Experiments on the coarsening behavior of two-phase mixtures in a model Pb-Sn system are reported. This system fulfills most of the assumptions of theory and has the particular advantage that all the materials parameters necessary for a comparison between the experimentally measured and theoretically predicted coarsening kinetics are known. We have examined the coarsening of Sn-rich and Pb-rich solid phases in contact with eutectic liquid in the volume fraction solid range above approximately 0.6 where the development of a solid skeletal structure inhibits sedimentation. Particle intercept distributions are measured and found to be time independent when scaled by the average intercept. This invariance is interpreted as evidence that scale factor coarsening is present. The intercept distributions are in good agreement with the predictions of theory. Measurements of average intercept diameter as a function of time establish unambiguously that the coarsening follows the theoretically predictedt 1/3 kinetics. The coarsening rate constants are measured as a function of volume fraction solid and are found to exceed the values calculated from theory using the known thermophysical properties of the Pb-Sn system by factors ranging from approximately 2 to 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Lifshitz and V. V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  2. C. Wagner:Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  3. A. D. Brailsford and P. Wynblatt:Acta Metall., 1979, vol. 27, pp. 489–97.

    Article  CAS  Google Scholar 

  4. Y. Enomoto, K. Kawasaki, and M. Tokuyama:Acta Metall., 1987, vol. 35, pp. 907–13.

    Article  CAS  Google Scholar 

  5. Y. Enomoto, K. Kawasaki, and M. Tokuyama:Acta Metall., 1987, vol. 35, pp. 915–22.

    Article  CAS  Google Scholar 

  6. P. W. Voorhees and M. E. Glicksman:Acta Metall., 1984, vol. 32, pp. 2001–11.

    Article  CAS  Google Scholar 

  7. P. W. Voorhees and M. E. Glicksman:Acta Metall., 1984, vol. 32, pp. 2013–30.

    Article  CAS  Google Scholar 

  8. J. A. Marqusee and John Ross:J. Chem. Phys., 1984, vol. 80, pp. 536–43.

    Article  CAS  Google Scholar 

  9. C. W. J. Beenakker:Phys. Rev. A, 1986, vol. 33, pp. 4482–85.

    Article  CAS  Google Scholar 

  10. M. Marder:Phys. Rev. Lett., 1985, vol. 55, pp. 2953–56.

    Article  CAS  Google Scholar 

  11. P. W. Voorhees:J. Stat. Phys., 1985, vol. 38, pp. 231–52.

    Article  Google Scholar 

  12. Baird, Frazier, and Naumann: Marshal Space Flight Center, private communication, 1987.

  13. Sung Soo Kim and Duk N. Yoon:Acta Metall., 1983, vol. 31, pp. 1151–57.

    Article  CAS  Google Scholar 

  14. P. W. Voorhees, G. B. McFadden, and R. F. Boisvert:Acta Metall., in press.

  15. W. D. Kingery:J. Appl. Phys., 1959, vol. 30, pp. 301–06.

    Article  CAS  Google Scholar 

  16. R. T. DeHoff:Metallography, 1984, vol. 17, pp. 203–08.

    Article  CAS  Google Scholar 

  17. W. A. Kaysser, S. Takajo, and G. Petzow:Acta Metall., 1984, vol. 32, pp. 115–22.

    Article  CAS  Google Scholar 

  18. Chan Hyoung Kang and Duk N. Yoon:Metall. Trans. A, 1981, vol. 12A, pp. 65–69.

    Article  Google Scholar 

  19. J. W. Cahn and R. L. Fullman:Trans. AIME, 1956, vol. 206, pp. 610–12.

    Google Scholar 

  20. J. E. Hilliard:Trans. AIME, 1968, vol. 242, pp. 1373–80.

    Google Scholar 

  21. S. Takajo, W. A. Kaysser, and G. Petzow:Acta Metall., 1984, vol. 32, pp. 107–13.

    Article  CAS  Google Scholar 

  22. L. Angers, M. E. Fine, and J. R. Weertman:Metall. Trans. A, 1987, vol. 18A, pp. 555–62.

    Article  CAS  Google Scholar 

  23. P. W. Voorhees and M. E. Glicksman:Metall. Trans. A, 1984, vol. 15A, pp. 1081–88.

    Article  CAS  Google Scholar 

  24. Su Sok Kang and Duk N. Yoon:Metall. Trans. A, 1982, vol. 13A, pp. 1405–11.

    Article  Google Scholar 

  25. A. N. Niemi and T. H. Courtney:J. Mater. Sci., 1981, vol. 16, pp. 226–36.

    Article  CAS  Google Scholar 

  26. M. Gunduz and J. D. Hunt:Acta Metall., 1985, vol. 33, pp. 1651–72.

    Article  CAS  Google Scholar 

  27. R. M. Jordan and J. D. Hunt:Metall. Trans., 1971, vol. 2, pp. 3401–10.

    Article  CAS  Google Scholar 

  28. K. G. Davis and L. M. Hogan:J. Australian Inst. Met., 1970, vol. 15, pp. 29–33.

    Google Scholar 

  29. D. Stockdale:J. Inst. Metals, 1930, vol. 43, pp. 193–216.

    Google Scholar 

  30. H. J. Fecht, M. S. Zhang, Y. A. Chang, and J. H. Perepezko: unpublished research, 1987.

  31. H. R. Thresh, A. F. Crawley, and D.W.G. White:Trans. AIME, 1968, vol. 242, pp. 819–22.

    CAS  Google Scholar 

  32. R. F. Sekerka, C. L. Jennfils, and R. W. Heckel: inLectures on the Theory of Phase Transformations, Hubert I. Aaronson, ed., AIME, 1974, pp. 117-63.

  33. P. W. Voorhees: unpublished research, 1987.

  34. D. A. Goodman, J. W. Cahn, and L. H. Bennett:Bulletin of Alloy Phase Diagrams, 1981, vol. 2, pp. 29–34.

    Article  CAS  Google Scholar 

  35. Matts Hillert: inLectures on the Theory of Phase Transformations, Hubert I. Aaronson, ed., AIME, 1974, pp. 1-50.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the National Bureau of Standards

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardy, S.C., Voorhees, P.W. Ostwald ripening in a system with a high volume fraction of coarsening phase. Metall Trans A 19, 2713–2721 (1988). https://doi.org/10.1007/BF02645806

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645806

Keywords

Navigation