Skip to main content
Log in

Identification, paracrine generation, and possible function of human breast carcinoma myofibroblasts in culture

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Myofibroblasts from human breast carcinomas were identified and experimentally generated in culture, and a possible function was examined. The frequency ofα-smooth muscle actin immunoreactive cells was evaluated as a measure of myofibroblast differentiation in primary culture. Few or noα-smooth muscle actin-positive stromal cells (6.1 ± 8.4%) were identified in primary cultures from normal breast tissue (n=9). In contrast, high frequencies (68.8 ± 15.1%) were observed in primary cultures from carcinomas (n=19). The frequencies of myofibroblasts in primary cultures were almost identical to those obtained in the corresponding cryostat sections (69.1 vs. 68.8%). A possible precursor cell to the myofibroblast was looked for among typical fibroblasts and vascular smooth muscle cells. Purified blood vessels containing both fibroblasts and vascular smooth muscle cells were embedded in collagen gel and incubated with medium conditioned by breast epithelial cells. Fibroblasts rather than smooth muscle cells were recruited from the blood vessels. In medium conditioned by carcinoma cell lines or in co-cultures of carcinoma cell lines and purified fibroblasts,α-smooth muscle actin and the typical myofibroblast phenotype were induced in otherwiseα-smooth muscle actin-negative fibroblasts. The effect of myofibroblasts on cellular movement—essential to neoplastic cells—was analyzed. Spontaneous motility of tumor cells (MCF-7) was entirely suppressed in a collagen gel assay. Under these conditions tumor cell motility was selectively mediated by direct cell-to-cell interaction between tumor cells and myofibroblasts. Under chemically defined conditions, interaction was dependent on the presence of plasminogen. Anti-plasminogen, soybean trypsin inhibitor, and anti-fibronectin partly neutralized the effect of plasminogen. It is concluded that elements of myofibroblast differentiation and function may be studied in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, E. F.; Newton, C. J.; Braunsberg, H., et al. Effects of human breast fibroblasts on growth and 17β-estradiol dehydrogenase activity of MCF-7 cells in culture. Breast Cancer Res. Treat. 11:165–172; 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Barsky, S. H.; Roa, C. N.; Grotendorst, G. R., et al. Increased content of type V collagen in desmoplasia of human breast carcinoma. Am. J. Pathol. 108:276–283; 1982.

    PubMed  CAS  Google Scholar 

  3. Basset, P.; Bellocq, J. P.; Wolf, C., et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348:699–704; 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Briand, P.; Lykkesfeldt, A. Long-term cultivation of a human breast cancer cell line, MCF-7, in a chemically defined medium. Effect of estradiol. Anticancer Res. 6:85–90; 1986.

    PubMed  CAS  Google Scholar 

  5. Briand, P.; Petersen, O. W.; van Deurs, B. A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined medium. In Vitro Cell. Dev. Biol. 23:181–188; 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Bronzert, D. A.; Pantazis, P.; Antoniades, H. N., et al. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc. Natl. Acad. Sci. USA 84:5763–5767; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Camps, J. L.; Chang, S.-M.; Hsu, T. C., et al. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc. Natl. Acad. Sci. USA 87:75–79; 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Chamley, J. H.; Gröschel-Steward, U.; Campbell, G. R., et al. Distinction between smooth muscle, fibroblasts and endothelial cells in culture by use of fluoresceinated antibodies against smooth muscle actin. Cell Tissue Res. 177:445–457; 1977.

    PubMed  CAS  Google Scholar 

  9. Chamley-Campbell, J. H.; Campbell, G. What controls smooth muscle phenotype? Atherosclerosis 40:347–357; 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Chiquet-Ehrismann, R.; Kalla, P.; Pearson, C. A. Participation of tenascin and transforming growth factor-β in reciprocal epithelial-mesenchymal interactions of MCF7 cells and fibroblasts. Cancer Res. 49:4322–4325; 1989.

    PubMed  CAS  Google Scholar 

  11. Chiquet-Ehrismann, R.; Kalla, P.; Pearson, C. A., et al. Tenascin interferes with fibronectin action. Cell 53:383–390; 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Chiquet-Ehrismann, R.; Mackie, E. J.; Pearson, C. A., et al. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 47:131–139; 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Darby, I.; Skalli, O.; Gabbiani, G.α-Smooth muscle muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab. Invest. 63:21; 1990.

    PubMed  CAS  Google Scholar 

  14. Gleiber, W. E.; Schiffmann, E. Identification of a chemoattractant for fibroblasts produced by human breast carcinoma cell lines. Cancer Res. 44:3398–3402; 1984.

    PubMed  CAS  Google Scholar 

  15. Grøndahl-Hensen, J.; Ralfkiær, E.; Kirkeby, L. T., et al. Localization of urokinase-type plasminogen activator in stromal cells in adenocarcinomas of the colon in humans. Am. J. Pathol. 138:111–117; 1991.

    Google Scholar 

  16. Guidry, C.; Hohn, S.; Hook, M. Endothelial cells secrete a factor that promotes fibroblast contraction of hydrated collagen gels. J. Cell Biol. 110:519–528; 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Haslam, S. Z. Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Res. 46:310–316; 1986.

    PubMed  CAS  Google Scholar 

  18. Klagsburn, M. Biosynthesis and storage of basic fibroblast growth factor (bFGF) by endothelial cells: implication for the mechanism of action of angiogenesis. In: Back, N.; Brewer, G. J.; Eijsvoogel, V. P., et al. eds. Growth factors and other aspects of wound healing: biological and clinical implications. New York: Arthur R. Liss; 1988:55–61.

    Google Scholar 

  19. Lippman, M. E.; Dickson, R. B.; Bates, S., et al. Autocrine and paracrine growth regulation of human breast cancer. Breast Cancer Res. Treat. 7:59–70; 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Lippman, M. E.; Dickson, R. B.; Gelmann, E. P., et al. Growth regulatory peptide production by human breast carcinoma cells. J. Steroid Biochem. 30:53–61; 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Mackie, E. J.; Halfter, W.; Liverani, D. Induction of tenascin in healing wounds. J. Cell Biol. 107:2757–2767; 1988.

    Article  PubMed  CAS  Google Scholar 

  22. McGrath, C. M. Augmentation of the response of normal mammary epithelial cells to estradiol by mammary stroma. Cancer Res. 43:1355–1360; 1983.

    PubMed  CAS  Google Scholar 

  23. Mignatti, P.; Robbins, E.; Rifkin, D. B. Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 47:487–498; 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Oda, D.; Gown, A. M.; Vande Berg, J. S., et al. The fibroblast-like nature of myofibroblasts. Exp. Mol. Pathol. 49:316–329; 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Ohtani, H.; Sasano, N. Myofibroblasts and myoepithelial cells in human breast carcinoma. Virchow. Arch. A Path. Anat. Histol. 385:247–261; 1980.

    Article  CAS  Google Scholar 

  26. Owens, g. K.; Loeb, A.; Gordon, D., et al. Expression of smooth muscle-specificα-isoaction in cultured vascular smooth muscle cells: relationship between growth and cytodifferentiation. J. Cell Biol. 102:343–352; 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Pallesen, G.; Nielsen, S.; Celis, J. E. Characterization of a monoclonal antibody (BG3C8) that reacts with basal cells of stratified epithelia. Histopathology 11:591–601; 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Petersen, O. W.; Hansen, S. H.; Laursen, I., et al. Effect of insulin on growth and expression of smooth muscle isoactin in human breast gland myoepithelial cells in a chemically defined culture system. Eur. J. Cell Biol. 50:500–509; 1989.

    PubMed  CAS  Google Scholar 

  29. Petersen, O. W.; van Deurs, B. Preservation of defined phenotypic traits in short-time cultured human breast carcinoma derived epithelial cell. Cancer Res. 47:856–866; 1987.

    PubMed  CAS  Google Scholar 

  30. Petersen, O. W.; van Deurs, B. Growth factor control of myoepithelialcell differentiation in cultures of human mammary gland. Differentiation 39:197–215; 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Petersen, O. W.; van Deurs, B. Distinction between vascular smooth muscle cells and myoepithelial cells in primary monolayer cultures of human breast tissue. In Vitro Cell Dev. Biol. 25:259–266; 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Petersen, O. W.; van Deurs, B.; Vang Nielsen, K., et al. Differential tumorigenecity of two autologous human breast carcinoma cell lines HMT-3909 S1 and HMT-3909 S8 established in serum-free medium. Cancer Res. 50:1–14; 1990.

    Google Scholar 

  33. Rosen, E. M.; Goldberg, I. D. Protein factors which regulate cell motility. In Vitro Cell. Dev. Biol. 25:1079–1087; 1989.

    Article  PubMed  CAS  Google Scholar 

  34. Rønnov-Jessen, L.; van Deurs, B.; Celis, J. E., et al. Smooth muscle differentiation in cultured human breast gland stromal cells. Lab. Invest. 63:532–543; 1990.

    PubMed  Google Scholar 

  35. Sappino, A.-P.; Schürch, W.; Gabbiani, G. Biology of disease. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab. Invest. 63:144–161; 1990.

    PubMed  CAS  Google Scholar 

  36. Sappino, A.-P.; Skalli, O.; Jackson, B., et al. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int. J. Cancer. 41:707–712; 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Sato, Y.; Rifkin, D. B. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-β1-like molecular by plasmin during co-culture. J. Cell Biol. 109:309–315; 1989.

    Article  PubMed  CAS  Google Scholar 

  38. Schürch, W.; Seemayer, T. A.; Lagacé, R. Stromal myofibroblasts in primary invasive and metastatic carcinomas. Virchows Arch. [A]. 391:125–139; 1981.

    Article  Google Scholar 

  39. Seemayer, T. A.; Schürch, W.; Lagacé, R. Myofibroblasts in human pathology. Hum. Pathol. 12:491–492; 1981.

    Article  PubMed  CAS  Google Scholar 

  40. Singer, K. H.; Searce, R. M.; Tuck, D. T., et al. Removal of fibroblasts from human epithelial cell cultures with use of a complement fixing monoclonal antibody reactive with human fibroblasts and monocytes/macrophages. J. Invest. Dermatol. 92:166–170; 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Skalli, O.; Gabbiani, G. The biology of the myofibroblast relationship to wound contraction and fibrocontractive diseases. In: Clark, R. A. F.; Henson, P. M., eds. The molecular and cellular biology of wound repair. New York: Plenum Publishing Corporation; 1988:373–402.

    Google Scholar 

  42. Skalli, O.; Pelte, M.-F.; Peclet, M.-C., et al.α-Smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J. Histochem. Cytochem. 37:315–321; 1989.

    PubMed  CAS  Google Scholar 

  43. Skalli, O.; Ropraz, P.; Trzeciak, A., et al. A monoclonal antibody againstα-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell. Biol. 103:2787–2796; 1986.

    Article  PubMed  CAS  Google Scholar 

  44. Skalli, O.; Schürch, W.; Seemayer, T., et al. Myofibroblasts from diverse pathologic settings are heterogeneous in their content of actin isoforms and intermediate filament proteins. Lab. Invest. 60:275–285; 1989.

    PubMed  CAS  Google Scholar 

  45. Tremblay, G. Stromal aspects of breast carcinoma. Exp. Mol. Pathol. 31:248–260; 1979.

    Article  PubMed  CAS  Google Scholar 

  46. Tsukada, T.; McNutt, M. A.; Ross, R., et al. HHF35, a muscle actinspecific monoclonal antibody II. Reactivity in normal, reactive and neoplastic human tissues. Am. J. Pathol. 127:389–402; 1987.

    PubMed  CAS  Google Scholar 

  47. Tsukada, T.; Tippens, D.; Gordon, D., et al. HHF35, a muscle-actinspecific monoclonal antibody. Am. J. Pathol. 126:51–60; 1987.

    PubMed  CAS  Google Scholar 

  48. Varani, J.; McKeever, P. E.; Fligiel, S. E. G., et al. Plasminogen activator production by human tumor cells: effect on tumor cell-extracellular matrix interactions. Int. J. Cancer. 40:772–777; 1987.

    Article  PubMed  CAS  Google Scholar 

  49. Welch, M. P.; Odland, G. F.; Clark, R. A. F. Temporal relationship of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J. Cell Biol. 110:113–145; 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rønnov-Jessen, L., van Deurs, B., Nielsen, M. et al. Identification, paracrine generation, and possible function of human breast carcinoma myofibroblasts in culture. In Vitro Cell Dev Biol - Animal 28, 273–283 (1992). https://doi.org/10.1007/BF02634244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634244

Key words

Navigation