Skip to main content
Log in

In vitro modulation of filament bundling in f-actin and keratins by annexin II and calcium

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In our preliminary subcellular localization experiment we demonstrated that annexin II co-localized with submembranous actin in subpopulations of both cultured fibroblasts and keratinocytes. To investigate the physical interaction between annexin II and actin at the cell periphery, in vitro reconstitution experiments were carried out with keratins used as a control. Annexin II, isolated by immunoaffinity column chromatography, was found to exist as globular structures measuring 10 to 25 nm in diameter by rotary shadowing, similar to a previous report. We believe that these structures represent its polymeric forms. By negative staining, monomeric annexin II was detectable as tapered rods, measuring 6 nm in length and 1 to 2 nm in diameter. When annexin II was mixed with actin in 3 mM piperazine-N, N-bis-2-ethanesulfonic acid (PIPES) buffer with 10 mM NaCl2, 2 mM MgCl2 and 0.1 mM CaCl2, thick twisting actin bundles formed, confirming previous reports. This bundling was much reduced when calcium was removed. In the presence of 5 mM ethylenediamine tetra-acetic acid (EDTA) in 5 mM tris, pH 7.2, keratins were found to form a network of filaments, which began to disassemble when the chelator was removed and became fragmented when 0.1 mM CaCl2 was added. Keratins under the same conditions did not fragment when annexin II was present. These results suggest that annexin II, in conjunction with Ca2+, may be involved in a flexible system accommodating changes in the membrane cytoskeletal framework at the cell periphery in keratinocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barranden, Y.; Green, H. Cell migration is essential for sustained growth of keratinocyte colonies: the role of transforming growth factor-α and epidermal growth factor. Cell 50:1131–1137; 1987.

    Article  Google Scholar 

  • Boitano, B.; Dirksen, E. R.; Sanderson, M. J. Intercellular propagation of calcium waves mediated by inositol triphosphate. Science 258:292–295; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Brundage, R. A., Fogarty, K. E.; Tuft, R. A., et al. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254:703–706; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Cheney, R. E.; Willard, M. B. Characterization of the interaction between calpactin I and fodrin (non-erythroid spectrin). J. Biol. Chem. 264:18068–18075; 1989.

    PubMed  CAS  Google Scholar 

  • Cheng, Y-S. E.; Chen, L. B. Detection of phosphotyrosine-containing 34,000 dalton protein on the framework of cells transformed with Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 78:2388–2392; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Coulombe, P. A.; Fuchs, E. Elucidating the early stages of keratin filament assembly. J. Cell Biol. 111:153–169; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J. A.; Hunter, T. Regulation of cell growth and transformation by tyrosine-specific protein kinases: the search for important cellular substrate proteins. Curr. Topics Microbiol. Immunol. 107:125–161; 1983.

    CAS  Google Scholar 

  • Creutz, C. E. The annexins and exocytosis. Science 258:924–931; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Crumpton, M. J.; Dedman, J. R. Protein terminology tangle. Nature 345:212; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Drust, D. S.; Creutz, C. E. Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature 331:88–91; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Gerke, V.; Weber, K. Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from intestinal brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO 3:227–233; 1984.

    CAS  Google Scholar 

  • Glenney, J. R., Jr. Phospholipid-dependent Ca2+ binding by the 36 kDa tyrosine kinase substrate (calpactin) and its 33 kDa clone. J. Biol. Chem. 261:7247–7252; 1986.

    PubMed  CAS  Google Scholar 

  • Glenney, J. R., Jr.; Glenney, P. Comparison of Ca++-regulated events in the intestinal border. J. Cell. Biol. 100:754–763; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Glenney, J. R., Jr.; Tack, B.; Powell, M. A. Calpactin: two distinct Ca2+-regulated phospholipid and actin-binding proteins isolated from lung and placenta. J. Cell Biol. 104:503–511; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Gould, K. L.; Woodgett, J. R.; Isacke, C. M., et al. The protein-tyrosine kinase substrate p36 is also a substrate for protein kinase C in vitro and in vivo. Mol. Cell. Biol. 6:2738–2744; 1986.

    PubMed  CAS  Google Scholar 

  • Greenberg, M. E.; Edelman, G. M. The 34 kD pp60arc substrate is located at the inner face of the plasma membrane. Cell 33:767–779; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Huang, K. S.; Wallner, B. P.; Mattliano, R. J., et al. Two human 35 kD inhibitors of phospholipase A2 are related to substrates of pp60arc and of the epidermal growth factor receptor/kinase. Cell 46:191–199; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Huber, R.; Schneider M., Mayr, I., et al. The calcium binding sites in human annexin V by crystal structure analysis at 2.0 Å resolution. Implications for membrane binding and calcium channel activity. FEBS 275:15–21; 1990.

    Article  CAS  Google Scholar 

  • Huber, R.; Berendes, R.; Burger A., et al. Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J. Med. Biol. 223:683–704; 1992.

    CAS  Google Scholar 

  • Kristensen, T.; Saris, C. J. M.; Hunter, T., et al. Primary structure of bovine calpactin I heavy chain (p36), a major cellular substrate for retroviral protein-tyrosine kinases: homology with the human phospholipase A2 inhibitor lipocortin. Biochemistry 25:4497–4503; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Lehto, V. P.; Virtanen, I.; Paasivuo, R., et al. The p36 substrate of tyrosine-specific protein kinases co-localizes with non-erythrocyteα-spectrin antigen, p230 in surface lamina of cultured fibroblasts. EMBO. 2:1701–1705; 1983.

    CAS  Google Scholar 

  • Ma, A. S. P.; Lorincz, A. L. Immunofluorescence localization of peripheral proteins in cultured human keratinocytes. J. Invest. Dermatol. 90:331–335; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Ma, A. S. P.; Sun, T. T. Differentiation-related changes in the solubility of a 195 kD protein in human epidermal keratinocytes. J. Cell Biol. 103:41–48; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Nakata, T.; Sobue, K.; Hirokawa, N. Conformational changes and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry. J. Cell Biol. 110:13–25; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Nigg, E. A; Cooper, J. A.; Hunter, T. Immunofluorescent localization of a 39,000-dalton substrate of tyrosine protein kinases to the cytoplasmic surface of the plasma membrane. J. Cell Biol. 96:1601–1609; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Pepinsky, R. B.; Sinclaire, L. K. Epidermal growth factor-dependent phospholipid binding and phosphorylation of lipocortin. Nature 321:81–84; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Radke, K.; Gilmore, T.; Martin, G. S. Transformation by Rous sarcoma virus: a cellular substrate for transformation-specific protein phosphorylation contains phosphotyrosine. Cell 21:821–828; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian, T.; Pradel, L.-A.; Henry, J.-P., et al. The participation of annexin II (calpactin I) in calcium-evoked exocytosis requires protein kinase C. J. Cell Biol. 114:1135–1147; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, M. S.; Shida, H.; Giudice, G. J., et al. On the molecular organization, diversity and functions of desmosomal proteins. CIBA found. Sym. 125:3–25; 1987.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, A.S.P., Bystol, M.E. & Tranvan, A. In vitro modulation of filament bundling in f-actin and keratins by annexin II and calcium. In Vitro Cell Dev Biol - Animal 30, 329–335 (1994). https://doi.org/10.1007/BF02631454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631454

Key words

Navigation