Skip to main content
Log in

Establishment and characterization of immortalized clonal cell lines from fetal rat mesencephalic tissue

In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

This investigation reports for the first time the establishment of immortalized clones of dopamine-producing nerve cells in culture. Freshly prepared single-cell suspensions from fetal (12-day-old) rat mesencephalic tissue were transfected with plasmid vectors, pSV3neo and pSV5neo, using an electroporation technique. Cells were plated in tissue culture dishes which were precoated with a special substrate and contained modified MCDB-153 growth medium with 10% heat inactivated fetal bovine serum. The immortalized cells were selected by placing the transfected cells in a selection medium (modified MCDB-153 containing 400µg/ml geneticin). The survivors showed the presence of T-antigens and were non-tumorigenic. Two cell lines, 1RB3 derived from cells transfected with pSV3neo, and 2RB5 derived from cells transfected with pSV3neo, revealed only 1 to 2% tyrosine hydroxylase (TH)-positive cells. Repeated single-cell cloning of these cell lines by a standard technique failed to increase the number of TH-positive cells in any clones. Using three cycles of growth, alternating between hormone-supplemented, serum-free medium and serum-containing medium produced a cell line (1RB3A) that was very rich in TH-positive cells. The recloning of 1RB3A yielded clones some of which contained over 95% TH-positive cells. These cells produced homovanillic acid, a metabolite of dopamine, and may be useful not only for neural transplant but also for basic neurobiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Allen, G. S.; Burns, R. S.; Tulpan, N. B., et al. Adrenal medullary transplantation to the caudate nucleus in Parkinson’s disease: initial clinical results in 18 patients. Arch. Neurol. 46:487–491; 1989.

    PubMed  CAS  Google Scholar 

  2. Bakay, R. A. E.; Barrow, D. L.; Fiandaca, M. S., et al. Biochemical and behavioral correction of MPTP-like syndrome by fetal cell transplantation. Ann. NY Acad. Sci. 495:623–640; 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Bartelett, P. F.; Reid, H. H.; Bailey, K. A., et al. Immortalization of mouse neural precursor cells by the c-myc oncogene. Proc. Natl. Acad. Sci. USA 85:3255–3259; 1988.

    Article  Google Scholar 

  4. Bernard, O.; Reid, H. H.; Bartlett, P. F. Role of the c-myc and the N-myc oncogenes in the immortalization of neural precursors. J. Neurosci. Res. 24:9–20; 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Bjorklund, A.; Stenevi, U. Reconstruction of the nigrostriatial dopamine pathway by intracerebral nigral transplants. Brain Res. 177:555–560; 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Bohn, M. C.; Cupit, L.; Marciano, F., et al. Adrenal medulla graft enhanced recovery of striatal dopaminergic fibers. Science 237:913–916; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Bottenstein, J. E.; Sato, G. H. Growth of a rat neuroblastoma cell line in serum free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517; 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Choi, H. K.; Won, I. A.; Kontur, P. I., et al. Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res. 552:67–76; 1991.

    Article  PubMed  CAS  Google Scholar 

  9. Dunnett, S. B.; Annett, L. E. Nigral transplants in primate model of Parkinsonism. In: Lindvall, O., Bjorklund, A., Widner, H., eds. Intracerebral transplantation in movement disorders, vol. 4. Restorative neurology and neuroscience. Amsterdam: Elsevier; 1991:27–51.

    Google Scholar 

  10. Dunnett, S. B.; Hernandez, T.; Summerfield, A., et al. Graft-derived recovery from 6-0HDA lesions: specificity of ventral mesencephalic graft tissues. Exp. Brain Res. 71:411–424; 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Evrard, C.; Borde, I.; Marin, P., et al. Immortalization of bipotential and plastic glia—neuronal precursor cells. Proc. Natl. Acad. Sci. USA 87:3062–3066; 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Freed, C. R.; Breeze, R. E.; Rosenberg, N. L., et al. Transplantation of human fetal dopamine cells for Parkinson’s disease. Arch. Neurol. 47:505–512; 1990.

    PubMed  CAS  Google Scholar 

  13. Freed, C. R.; Breeze, T. E.; Rosenberg, N. L., et al. Survival of implanted fetal dopamine cells and neurological improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med. 327:1549–1555; 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Freed, W. J.; Poltorak, N.; Becker, J. B. Intracerebral adrenal medulla grafts: a review. Exp. Neurol. 110:39–166; 1990.

    Article  Google Scholar 

  15. Galiana, E.; Borde, I.; Marin, P., et al. Establishment of permanent astroglia cell lines, able to differentiate in vitro, from transgenic mice carrying the polyoma virus large T-gene: An alternative approach to brain cell immortalization. J. Neurosci. Res. 26:269–277; 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Gash, D. M.; Collier, T. J.; Sladek, J. R., Jr. Neural transplantation: a review of recent developments and potential application to aged brain. Neurobiol. Aging 6:131–150; 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Goetz, C. G.; Olanow, C. W.; Koller, W. C., et al. Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson’s disease. N. Engl. J. Med. 320:337–341; 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Henderson, B. T. H.; Clough, C. G.; Hughes, R. C., et al. Implantation of human fetal ventral mesencephalon to the right caudate nucleus in advanced Parkinson’s disease. Arch. Neurol. 48:822–827; 1991.

    PubMed  CAS  Google Scholar 

  19. Kentroti, S.; Vernadakis, A. Growth hormone—releasing hormone influences neural expression in the developing chick brain. I. Catecholaminergic neurons. Dev. Brain Res. 49:275–280; 1989.

    Article  CAS  Google Scholar 

  20. Kordower, J. H.; Fiandaca, M. S.; Notter, M. F. D., et al. Scientific basis for dopaminergic brain grafting. In: Koller, W. C.; Paulson, G., eds. Therapy of Parkinson’s disease. New York: Marcel Dekker, Inc.; 1990:443–472.

    Google Scholar 

  21. La Rosa, F. G.; Talmage, D. W. Major histocompatability complex antigen expression on parenchymal cells of thyroid allografts is not by itself sufficient to induce rejection. Transplantation 49:605–609; 1990.

    Article  PubMed  Google Scholar 

  22. Lechner, J. F.; LaVeek, M. A. A serum-free method for culturing normal human bronchial epithelial cells at clonal density. J. Tissue Cult. Methods 9:43–48; 1985.

    Article  Google Scholar 

  23. Lindvall, O.; Rehncrona, S.; Brundin, P., et al. Human fetal dopamine neurons grafted into striatum in two patients with severe Parkinson’s disease. Arch. Neurol. 46:615–631; 1989.

    PubMed  CAS  Google Scholar 

  24. Lindvall, O.; Backlund, E-O.; Farde L., et al. Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann. Neurol. 22:457–468; 1987.

    Article  PubMed  CAS  Google Scholar 

  25. Lindvall, O.; Brundin, P.; Widner, H., et al. Graft of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247:547–577; 1990.

    Article  Google Scholar 

  26. Lindvall, O.; Widner, H.; Rehncrona, S., et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: one-year clinical and neurophysiological observations in two patients with putaminal implants. Ann. Neurol. 31:155–165; 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with Folin Phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  28. Madrazo, I.; Leon, V.; Torres, C., et al. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N. Engl. J. Med. 318:51; 1988.

    PubMed  CAS  Google Scholar 

  29. Madrazo, I.; Drucker-Colin, R.; Diaz, B., et al. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N. Engl. J. Med. 316:831–834; 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Madrazo, I.; Franco-Bourland, R.; Ostrosky-Solis, F., et al. Fetal homotransplants (ventral mesencephalon and adrenal tissue) to the striatum of Parkinsonian subjects. Arch. Neurol. 48:1281–1285; 1990.

    Google Scholar 

  31. Masserano, J. M.; Takimoto, A. S.; Weiner, N. Tyrosine hydroxylase activity in the brain and adrenal gland of rats following chronic administrations of ethanol. Alcohol Clin. Exp. Res. 7:294–298; 1983.

    PubMed  CAS  Google Scholar 

  32. Mugele, K.; Kugler, H.; Spiess, J. Immortalization of a fetal rat brain cell line that expresses corticotropin releasing factor mRNA. DNA Cell Biol. 12:119–126; 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Prasad, K. N. Differentiation of neuroblastoma cells: a useful model for neurobiology and cancer. Biol. Rev. 66:431–451; 1991.

    PubMed  CAS  Google Scholar 

  34. Prasad, K. N.; Carvalho, E.; Kentroti, S., et al. Production of terminally differentiated neuroblastoma cells in culture. Rest. Neurol. Neurosci. In press; 1994.

  35. Prasad, K. N.; Kentroti, S.; Edwards-Prasad, J., et al. Modification of the expression of adenosine 3′, 5′-cyclic monophosphate—induced differentiated functions in neuroblastoma cells by beta-carotene and d-alpha-tocopheryl succinate. J. Am. Coll. Nutr. (In press); 1994.

  36. Perlow, M. J.; Freed, W. J.; Hoffer, B. J., et al. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647; 1979.

    Article  PubMed  CAS  Google Scholar 

  37. Pirisi, L.; Yasumoto, S.; Feller, M., et al. Transformation of human fibroblasts and keratinocytes with human papilloma virus type 16 DNA. J. Virol. 61:1061–1066, 1987.

    PubMed  CAS  Google Scholar 

  38. Sawle, G. V.; Bloomfield, P. M.; Bjorklund, A., et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: PET (18F)-6-l-fluorodopa studies in two patients with putaminal implants. Ann. Neurol. 31:166–173; 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Southern, P. J.; Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327–341; 1982.

    PubMed  CAS  Google Scholar 

  40. Sternberger, L. A.; Hardy, P. H., Jr.; Cuculis, J. J., et al. Unlabeled antibody-enzyme method of immunocytochemistry. Preparations and properties of soluble antigen-antibody complex (horse radish peroxidase-anti-horse radish peroxidase) and its use in the identification of spirochetes. J. Histochem. Cytochem. 18:315–333; 1970.

    PubMed  CAS  Google Scholar 

  41. Tandon, P. N.; Gopinath, G.; Mahapatra, A. K., et al. Neural transplantation in mammals: our experience. Proc. Indian Acad. Sci. B56:551–558; 1990.

    Google Scholar 

  42. Widner, H.; Brundin, P. Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis. Brain Res. Rev. 13:287–324; 1988.

    Article  CAS  Google Scholar 

  43. Yurek, D.; Sladek, J. R., Jr. Dopamine cell replacement: Parkinson’s disease. Ann. Rev. Neurosci. 13:415–440; 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K.N., Carvalho, E., Kentroti, S. et al. Establishment and characterization of immortalized clonal cell lines from fetal rat mesencephalic tissue. In Vitro Cell Dev Biol - Animal 30, 596–603 (1994). https://doi.org/10.1007/BF02631258

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631258

Key words

Navigation