Skip to main content
Log in

Insect tissue culture systems: models for study of hormonal control of development

  • TCA Session-In-Depth Invertebrate Cell Culture
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The regulation of growth and development of insects is under endocrine control and involves both juvenile hormones and ecdysteroids. Neuropeptides are master regulators which control the secretion of these hormones. Most experiments in insect endocrinology have been conducted in vivo, but tissue culture methodology is playing an increasing role due to the great interest in simpler model systems for the study of complex processes that occur in vivo. The availability of appropriate media has allowed the culture of a variety of insect organs and cell lines of defined origin which have kept certain properties of the parent tissues. Tissue culture approaches have been useful for studying hormonal control of morphogenetic processes. Cell lines are particularly suited to the study of hormonally regulated mechanisms of macromolecular biosynthesis and gene expression. Thus, the value of in vitro analysis in studies of regulation of hormone production is now recognized. Results obtained from tissue culture allow more precise definition of the hormonal requirements of insect cells and tissues for growth and differentiation and might make possible the discovery of new growth regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, S. O. Comparative aspects of arthropod cuticles. In: Sehnal, F.; Zabza, A.; Denlinger, D. L., eds. Endocrinological frontiers in physiological insect ecology. Wroclaw: Wroclaw Technological University Press; 1988:469–488.

    Google Scholar 

  2. Bidmon, H. J.; Sliter, T. J. The ecdysteroid receptor. Invert. Reprod. Dev. 18:13–28; 1990.

    CAS  Google Scholar 

  3. Bollenbacher, W. E.; Katahnia, E. J.; O’Brien, M., et al. Insect prothoracotropic hormone: evidence for two molecular forms. Science 207:1243–1245; 1984.

    Article  Google Scholar 

  4. Caruelle, J. P. Molting processes and hormonal control: an in vitro model. Experentia 36:883–885; 1980.

    Article  CAS  Google Scholar 

  5. Cassier, P.; Baghdassarian-Chalaye, D.; de Besse, N., et al. Ecdysteroids and activation of epidermal cells in the locust,Locusta migratoria. J. Insect Physiol. 34:669–678; 1988.

    Article  CAS  Google Scholar 

  6. Cassier, P.; Serrant, P.; Garcia, R., et al. Morphological and cytochemical studies of the effects of ecdysteroids in a lepidopteran cell line (IAL-PID2). Cell Tissue Res. In press.

  7. Cherbas, L.; Fristrom, J. W.; O’Connor, J. D. The action of ecdysone in imaginal discs and Kc cells ofDrosophila melanogaster. In: Hoffman, J.; Porchet, M., eds. Biosynthesis, metabolism and mode of action of invertebrate hormones. Berlin: Springer-Verlag: 1984:305–322.

    Google Scholar 

  8. Cherbas, L.; Koehler, M. D.; Cherbas, P. Effects of juvenile hormones on the ecdysone response ofDrosophila Kc cells. Dev. Genet. 10:177–188; 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Cox, D. L.; Willis, J. H. Post-translational modifications of the cuticular proteins ofHyalophora cecropia from different anatomical regions and metamorphic stages. Insect Biochem. 17:469–484; 1987.

    Article  CAS  Google Scholar 

  10. Delachambre, J.; Besson, M. T.; Quennedey, A., et al. Relationships between hormones and epidermal cell cycles during the metamorphosis ofTenebrio molitor. In: Hoffmann, J.; Porchet, M., eds. Biosynthesis, metabolism and mode of action of invertebrate hormones. Berlin: Springer-Verlag; 1984:245–254.

    Google Scholar 

  11. Dinan, L.; Spindler-Barth, M.; Spindler, K. D. Insect cell lines as tools for studying ecdysteroid action. Invert. Reprod. Dev. 18:43–54; 1990.

    CAS  Google Scholar 

  12. Dutkowski, A. B.; Oberlander, H.; Leach, C. E. Ultrastructure of cuticle deposited inPlodia interpunctella wing discs after various β-ecdysone treatmentsin vitro. Wilhelm Roux’s Arch. 183:155–164; 1977.

    Article  Google Scholar 

  13. Ferkovich, S. M.; Oberlander, H.; Leach, C. E., et al. Hormonal control of chitin biosynthesis in imaginal discs. In: Kurstak, E.; Maramorosch, K.; Dubendorfer, A., eds. Invertebrate systems in vitro. Amsterdam: Elsevier; 1980:209–216.

    Google Scholar 

  14. Fristrom, J. W.; Doctor, J.; Fristrom, D. K., et al. The formation of the pupal cuticle byDrosophila imaginal discs in vitro. Dev. Biol. 91:337–350; 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Fristrom, J. W.; Alexander, S.; Brown, E., et al. Ecdysone regulation of cuticle gene expression inDrosophila. Arch. Insect Biochem. Physiol. Suppl. 1:119–132; 1986.

    Article  Google Scholar 

  16. Galewsky, S.; Hope, J. K.; Rickoll, W. L. The effects of monensin on 20-hydroxyecdysone-induced glycoprotein secretion and aggregation inDrosophila S3 cells. J. Insect Physiol. 34:661–668; 1988.

    Article  CAS  Google Scholar 

  17. Gilbert, L. I.; Bollenbacher, W. E.; Goodman, W., et al. Hormones controlling insect metamorphosis. In: Hoffmann, J., ed. Recent progress in ecdysone research. New York: Academic Press; 1980:401–409.

    Google Scholar 

  18. Gilbert, L. I.; Combest, W. L.; Smith, W. A., et al. Neuropeptides, second messengers and insect molting. Bioessays 8:153–157; 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Ishizaki, H.; Suzuki, A. Prothoracotropic hormone ofBombyx mori. In: Hoffmann, J.; Porchet, M., eds. Biosynthesis, metabolism and mode of action of invertebrate hormones. Berlin: Springer-Verlag; 1984:63–77.

    Google Scholar 

  20. Iwani, M.; Kawakani, A.; Ishizaki, H., et al. Cloning of a gene encoding bombyxin, an insulin-like brain secretory peptide of the silkmothBombyx mori with prothoracotropic activity. Dev. Growth Differ. 31:31–37; 1989.

    Article  Google Scholar 

  21. Izquierdo, M.; Galceran, J.; Sampedro, J., et al. The role of 2B5 in the control of gene activity by ecdysone inDrosophila. J. Insect Physiol. 34:685–690; 1988.

    Article  CAS  Google Scholar 

  22. Kramerov, A. A.; Mukha, D. V.; Metakovsky, E. V., et al. Glycoproteins containing sulfated chitin-like carbohydrate moiety are synthesized in an establishedDrosophila melanogaster cell line. Insect Biochem. 16:417–432; 1986.

    Article  CAS  Google Scholar 

  23. Lepesant, J. A.; Richards, G. Ecdysteroid regulated genes. In: Koolman, J., ed. Ecdysone, from chemistry to mode of action. Stuttgart: Georg Thieme Verlag; 1989:355–367.

    Google Scholar 

  24. Lezzi, M.; Richards, G. Salivary glands. In: Koolman, J., ed. Ecdysone, from chemistry to mode of action. Stuttgart: Georg Thieme Verlag; 1989:393–406.

    Google Scholar 

  25. Lynn, D. E.; Oberlander, H. The establishment of cell lines from imaginal discs ofSpodoptera frugiperda andPlodia interpunctella. J. Insect Physiol. 29:591–596; 1983.

    Article  Google Scholar 

  26. Marks, E. W. Tissue culture systems: tools for insect endocrinology. In: Liss, A. R., ed. Endocrinology of insects. New York: Alan R. Liss, Inc.; 1983:509–515.

    Google Scholar 

  27. Martin, P.; Shearn, A. Development ofDrosophila imaginal discsin vitro: Effects of ecdysone concentration and insulin. J. Exp. Zool. 211:291–301; 1980.

    Article  CAS  Google Scholar 

  28. Mosna, G. Insulin can completely replace serum inDrosophila melanogaster cell culturesin vitro. Experientia 37:466–467; 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Oberlander, H.; Tomblin, C. Cuticle deposition in imaginal disks: effects of juvenile hormone and fat bodyin vitro. Science 177:441–442; 1972.

    Article  PubMed  CAS  Google Scholar 

  30. Oberlander, H. Tissue culture methods. In: Miller, T. A., ed. Cuticle techniques in arthropods. New York: Springer-Verlag; 1980:253–272.

    Google Scholar 

  31. Oberlander, H. The imaginal discs. In: Kerkut, G. A.; Gilbert, L. I., eds. Comprehensive insect physiology and biochemistry. Oxford: Pergamon Press; 1985:151–182.

    Google Scholar 

  32. Porcheron, P.; Caruelle, J. P.; Baehr, J. C., et al. Ecdysteroids and integuments in locusts. In: Hoffmann, J.; Porchet, M., eds. Biosynthesis, metabolism and mode of action of invertebrate hormones. Berlin: Springer-Verlag; 1984:234–244.

    Google Scholar 

  33. Porcheron, P.; Oberlander, H.; Leach, C. E. Ecdysteroid regulation of amino sugar uptake in a lepidopteran cell line derived from imaginal discs. Arch. Insect Biochem. Physiol. 7:145–155; 1988.

    Article  CAS  Google Scholar 

  34. Porcheron, P.; Morinierè, M.; Coudouel, N., et al. Ecdysteroid-stimulated synthesis and secretion of anN-acetyl-d-glucosamine rich glycopeptide in a lepidopteran cell line derived from imaginal discs. Arch. Insect Biochem. Physiol. 16:257–272; 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Quennedey, A.; Quennedey, B.; Delbecque, J. P., et al. Thein vitro development of the pupal integument and the effects of ecdysteroid inTenebrio molitor (Insecta, Coleoptera). Cell Tissue Res. 232:493–511; 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Riddiford, L. M. Hormonal control of sequential gene expression in insect epidermis. In: Hoffmann, J.; Porchet, M., eds. Biosynthesis, metabolism and mode of action of invertebrate hormones. Berlin: Springer-Verlag; 1984:265–272.

    Google Scholar 

  37. Riddiford, L. M. The epidermis as a model system for ecdysteroid action. In: Koolman, J., ed. Ecdysone, from chemistry to mode of action. Stuttgart: Georg Thieme Verlag; 1989:407–413.

    Google Scholar 

  38. Riddihough, G.; Pelham, H. R. B. An ecdysone response element in theDrosophila hsp 27 promoter. EMBO J. 6:3729–3737; 1987.

    PubMed  CAS  Google Scholar 

  39. Sedlak, B. J.; Gilbert, L. I. Correlations between epidermal cell structure and endogenous hormone titers during the fifth larval instar of the tobacco hornworm,Manduca sexta. Tissue Cell 11:643–653; 1979.

    Article  PubMed  CAS  Google Scholar 

  40. Segraves, W. A.; Richards, G. Regulatory and developmental aspects of ecdysone-regulated gene expression. Invert. Reprod. Dev. 18:67–76; 1990.

    CAS  Google Scholar 

  41. Spindler-Barth, M.; Kammam, V.; Spindler, K. D. Hormonal regulation of chitin synthesis in two insect cell lines. In: SkjakBraek, G.; Anthonse, T.; Sandford, P., eds. London: Elsevier Applied Sciences: 1989:279–289.

    Google Scholar 

  42. Ward, G. B.; Newman, S. M.; Klosterman, H. J., et al. Effects of 20-hydroxyecdysone and diflubenzuron on chitin production by a cockroach cell line. In Vitro Cell Dev. Biol. 24:326–332; 1988.

    Article  CAS  Google Scholar 

  43. Willis, J. H. Cuticular proteins: the neglected component. Arch. Insect Biochem. Physiol. 6:203–215; 1987.

    Article  CAS  Google Scholar 

  44. Wolfgang, W. G.; Riddiford, L. M. Cuticular morphogenesis during continuous growth of the final instar of a moth. Tissue Cell 13:757–772; 1981.

    Article  PubMed  CAS  Google Scholar 

  45. Yund, M. A. Imaginal discs as a model for studying ecdysteroid action. In: Koolman, J., ed. Ecdysone, from chemistry to mode of action. Stuttgart: Georg Thieme Verlag; 1989:384–392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porcheron, P. Insect tissue culture systems: models for study of hormonal control of development. In Vitro Cell Dev Biol - Animal 27, 479–482 (1991). https://doi.org/10.1007/BF02631148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631148

Key words

Navigation