Skip to main content
Log in

Regulation of c-myc and c-fos proto-oncogene expression by animal cell growth factors

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Animal cell growth factors stimulate expression of the proto-oncogenes c-myc and c-fos. The products of these genes seem to act as intracellular mediators of the mitogenic response to growth factors. Phosphatidyl inositol breakdown products function as cytoplasmic second messengers to induce transcription of c-myc and c-fos although they may not play an exclusive role in this regard. Post-transcriptional events may contribute to the modulation of c-myc gene expression. Following induction, the c-myc and c-fos mRNAs are selectively degraded within the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armelin, H. A.; Armelin, M. C. S.; Kelly, K., et al. Functional role for c-myc in mitogenic response to platelet-derived growth factor. Nature 310: 655–660; 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Balk, S. D.; Riley, T. M.; Gunther, H., et al. Heparin-treated, v-myc-transformed chicken heart mesenchymal cells assume a normal morphology but are hypersensitive to epidermal growth factor (EGF) and brain fibroblast growth factor (bFGF); cells transformed by the v-Ha-ras oncogene are refractory to EGF and bFGF are hypersensitive to insulin-like growth factors. Proc. Natl. Acad. Sci. USA 82: 5781–5785; 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Bentley, D. L.; Groudine, M. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321: 702–706; 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Berridge, M. J.; Irvine, R. F. Inositol tris-phosphate: a novel second messenger in cellular signal transduction. Nature 312: 315–321; 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Blanchard, J.-M.; Piechaczyk, M.; Dani, C., et al. c-myc Gene is transcribed at high rate in G0-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature 317: 443–445; 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Bravo, R.; Burckhardt, J.; Curran, T., et al. Stimulation and inhibition of growth by EGF in different A431 cell clones is accompanied by the rapid induction of c-fos and c-myc proto-oncogenes. EMBO J. 4:(5): 1193–1197; 1985.

    PubMed  CAS  Google Scholar 

  7. Bravo, R.; Burckhadrt, J.; Curran, T., et al. Expression of c-fos in NIH3T3 cells is very low but inducible throughout the cell cycle. EMBO J.5: 695–700; 1986.

    PubMed  CAS  Google Scholar 

  8. Calabretta, B. Dissociation of c-fos induction from macrophage differentiation in human myeloid leukemia cell lines. Mol. Cell. Biol. 7:(2): 769–774; 1987.

    PubMed  CAS  Google Scholar 

  9. Campisi, J.; Gray, H. E.; Pardee, A. B., et al. Cell-cycle control of c-myc but no c-ras expression is lost following chemical transformation. Cell 36: 241–247; 1984.

    Article  PubMed  CAS  Google Scholar 

  10. Caput, D.; Beutler, B.; Hartog, K., et al. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83: 1670–1674; 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Cochran, B. H.; Reffel, A. C.; Stiles, C. D. Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 33: 939–947; 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Cochran, B. H.; Zullo, J.; Verma, I. M., et al. Expression of the c-fos gene and of afos-related gene is stimulated by platelet-derived growth factor. Science 226: 1080–1082; 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Colletta, G.; Cirafici, A. M.; Vecchio, G. Induction of the c-fos oncogene by thyrotropic hormone in rat thyroid cells in culture. Science 233: 458–460; 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Conscience, J-F; Verrier, B.; Martin, G. Interleukin-3-dependent expression of the c-myc and c-fos proto-oncogenes in hemopoietic cell lines. EMBO J. 5: 317–323; 1986.

    PubMed  CAS  Google Scholar 

  15. Cory, S.; Bernard, O.; Bowtell, D., et al. Murine c-myc retroviruses alter the growth requirements of myeloid cell lines. Oncogene Res. 1: 61–67; 1987.

    PubMed  CAS  Google Scholar 

  16. Coughlin, S. R.; Lee, W. M. F.; Williams, P. W., et al. C-myc gene expression is stimulated by agents that activate protein kinase C and does not account for the mitogenic effect of PDGF. Cell 43:243–251; 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Dani, C.; Blanchard, J.-M.; Piechaczyk, S., et al. Extreme instability ofmyc mRNA in normal and transformed human cells. Proc. Natl. Acad. Sci. USA 81: 7046–7050; 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Dani, C.; Mechti, N.; Piechaczyk, M., et al. Increased rate of degradation of c-myc mRNA in interferon-treated Daudi cells. Proc. Natl. Acad. Sci. USA 82: 4896–4899; 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Dean, M.; Levine, R. A.; Campisi, J. C-myc regulation during retinoic acid-induced differentiation of F9 cells is posttranscriptional and associated with growth arrest. Mol. Cell. Biol. 6:(2): 518–524; 1986.

    PubMed  CAS  Google Scholar 

  20. Dean, M.; Levine, R. A.; Ran, W., et al. Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J. Biol. Chem. 261: 9161–9166; 1986.

    PubMed  CAS  Google Scholar 

  21. Deschamps, J.; Meijlink, F.; Verma, I. M. Identification of a transcriptional enhancer element upstream from the proto-oncogenefos. Science 230: 1174–1177; 1985.

    Article  PubMed  CAS  Google Scholar 

  22. Distel, D. J.; Ro, H-S.; Rosen, B. S., et al. Nucleoprotein complexes that regulate gene expression in adipocyte differentiation: direct participation of c-fos. Cell 49: 835–844; 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Eick, D.; Piechaczyk, M.; Henglein, B., et al. Aberrant c-myc RNAs of Burkitt's lymphoma cells have longer half-lives. EMBO J. 4:(13B): 3717–3725; 1985.

    PubMed  CAS  Google Scholar 

  24. Gilman, M. Z.; Wilson, R. N.; Weinberg, R. A. Multiple protein-binding sites in the 5′-flanking region regulate c-fos expression. Mol. Cell. Biol. 6: 4305–4316; 1986.

    PubMed  CAS  Google Scholar 

  25. Granelli-Piperno, A.; Andrus, L.; Steinman, R. M. Lymphokine and nonlymphokine mRNA levels in stimulated human T cells. J. Exp. Med. 163: 922–937; 1986.

    Article  PubMed  CAS  Google Scholar 

  26. Greenberg, M. E.; Greene, L. A.; Ziff, E. B. Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC12 cells. J. Biol. Chem. 260: 14101–14110; 1985.

    PubMed  CAS  Google Scholar 

  27. Greenberg, M. E.; Ziff, E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311: 433–438; 1984.

    Article  PubMed  CAS  Google Scholar 

  28. Habenicht, A. J. R.; Glomset, J. A.; King, W. C., et al. Early changes in phosphatidylinositol and arachidonic acid metabolism in quiescent Swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J. Biol. Chem. 256: 12329–12335; 1981.

    PubMed  CAS  Google Scholar 

  29. Hayes, T. E.; Kitchen, A. M.; Cochran, B. H. Inducible binding of a factor to the c-fos regulatory region. Proc. Natl. Acad. Sci. USA 84: 1272–1276; 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Heikkila, R.; Schwab, G.; Wickstrom, E., et al. A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1. Nature 328: 445–449; 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Holt, J. T.; Gopal, T. V.; Moulton, A. D., et al. Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc. Natl. Acad. Sci. USA 83: 4799–4798; 1986.

    Article  Google Scholar 

  32. Kaczmarek, L.; Hyland, J. K.; Watt, R., et al. Microinjected c-myc as a competence factor. Science 228: 1313–1315; 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Keath, E. J.; Kelekar, A.; Cole, M. D. Transcriptional activation of the translocated c-myc oncogene in mouse plasmacytomas: Similar RNA levels in tumor and proliferating normal cells. Cell 37: 521–528; 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Kelekar, A.; Cole, M. D. Tumorigenicity of fibroblast lines expressing the adenovirus Ela, cellular p53, or normal c-myc genes. Mol. Cell Biol. 6:(1): 7–14; 1986.

    PubMed  CAS  Google Scholar 

  35. Kelly, K.; Cochran, B. H.; Stiles, C. D., et al. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35: 603–610; 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Knight, E., Jr.; Anton, E. D.; Fahey, D., et al. Interferon regulates c-myc gene expression in Daudi cells at the post-transcriptional level. Proc. Natl. Acad. Sci. USA 82: 1151–1154; 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Kronke, M.; Leonard, W. J.; Depper, J. M., et al. Sequential expression of genes involved in human T lymphocyte growth and differentiation. J. Exp. Med. 161: 1593–1598; 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Kruijer, W.; Cooper, J. A.; Hunter, T., et al. Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312: 711–716; 1984.

    Article  PubMed  CAS  Google Scholar 

  39. Kruijer, W.; Skelly, H.; Botteri, F., et al. Proto-oncogene expression in regenerating liver is simulated in cultures of primary adult rat hepatocytes. J. Biol. Chem. 261:(17): 7929–7933; 1986.

    PubMed  CAS  Google Scholar 

  40. Lin, J-X.; Vilcek, J. Tumor necrosis factor and interleukin-1 cause a rapid and transient stimulation of c-fos and c-myc mRNA levels in human fibroblasts. J. Biol. Chem. 262: 11908–11911; 1987.

    PubMed  CAS  Google Scholar 

  41. Linial, M.; Gunderson, N.; Groudine, M. Enhanced transcription of c-myc in bursal lymphoma cells requires continuous protein synthesis. Science 230: 1126–1132; 1985.

    Article  PubMed  CAS  Google Scholar 

  42. Makino, R.; Hayashi, K.; Sugimura, T. C-myc transcript is induced in rat liver at a very early stage of regeneration or by cycloheximide treatment. Nature 310: 697–698; 1984.

    Article  PubMed  CAS  Google Scholar 

  43. McCaffrey, P.; Ran, W.; Campisi, J., et al. Two independent growth factor-generated signals regulated c-fos and c-myc mRNA levels in Swiss 3T3 cells. J. Biol. Chem. 262: 1442–1445; 1987.

    PubMed  CAS  Google Scholar 

  44. Mitchell, R. Inositol phospholipids and cell surface receptor function. Biochem. Biophys. Acta. 415: 81–147; 1985.

    Google Scholar 

  45. Mitchell, R. L.; Henning-Chubb, C.; Huberman, E., et al. C-fos expression is neither sufficient nor obligatory for differentiation of monomyelocytes to macrophages. Cell 45: 497–504; 1986.

    Article  PubMed  CAS  Google Scholar 

  46. Mougneau, E.; Lemieux, L.; Rassoulzadegan, M., et al. Biological activities of v-myc and rearranged c-myc oncogenes in rat fibroblast cells in culture. Proc. Natl. Acad. Sci. USA 81: 5758–5762; 1984.

    Article  PubMed  CAS  Google Scholar 

  47. Muller, R.; Bravo, R.; Burckhardt, J., et al. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312: 716–720; 1984.

    Article  PubMed  CAS  Google Scholar 

  48. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumor promoter. Nature 308: 693–698; 1984.

    Article  PubMed  CAS  Google Scholar 

  49. Nishikura, K.; Murray, J. M. Antisense RNA of proto-oncogene c-fos blocks renewed growth of quiescent 3T3 cells. Mol. Cell. Biol. 7: 639–649; 1987.

    PubMed  CAS  Google Scholar 

  50. Piechaczyk, M.; Yang, J.-Q.; Blanchard, J. M., et al. Post-transcriptional mechanisms are responsible for accumulation of truncated c-myc RNAs in murine plasma cell tumors. Cell 42:589–597; 1985.

    Article  PubMed  CAS  Google Scholar 

  51. Pledger, W. J.; Stiles, C. D.; Antoniades, H. N., et al. Induction of DNA synthesis in Balb/c-3T3 cells by serum components: Reevaluation of the commitment process. Proc. Natl. Acad. Sci. USA 74: 4481–4485; 1977.

    Article  PubMed  CAS  Google Scholar 

  52. Prywes, R.; Roeder, R. G. Inducible binding of a factor to the c-fos enhancer. Cell 47: 777–784; 1986.

    Article  PubMed  CAS  Google Scholar 

  53. Rabbitts, P. H.; Forster, A.; Stinson, M. A., et al. Truncation of exon 1 from the c-myc gene results in prolonged c-myc mRNA stability. EMBO J. 4: 3727–3733; 1985.

    PubMed  CAS  Google Scholar 

  54. Rabbitts, P. H.; Watson, J. V.; Lamond, A., et al. Metabolism of c-myc gene products: c-myc mRNA protein expression in the cell cycle. EMBO J. 4: 2009–2015; 1985.

    PubMed  CAS  Google Scholar 

  55. Ran, W.; Dean, M.; Levine, R. A., et al. Induction of c-fos and c-myc mRNA by epidermal growth factor or calcium ionophore is cAMP dependent. Proc. Natl. Acad. Sci. USA 83: 8216–8220; 1986.

    Article  PubMed  CAS  Google Scholar 

  56. Cleveland, J. L.; Brightman, K., et al. Abrogation of IL-3 and IL-2 dependence by recombinant murine retroviruses expressing v-myc oncogenes. Nature 317: 434–438; 1985.

    Article  PubMed  Google Scholar 

  57. Reed, J. C.; Alpers, J. D.; Nowell, P. C., et al. Sequential expression of proto-oncogenes during lectin-stimulated mitogenesis of normal human lymphocytes. Proc. Natl. Acad. Sci. USA 83: 3982–3986; 1986.

    Article  PubMed  CAS  Google Scholar 

  58. Rozengurt, E.; Sinnett-Smith, J. W. Bombesin induction of c-fos and c-myc proto-oncogenes in Swiss 3T3 cells: significance for the mitogenic response. J. Cell. Physiol. 131: 218–225; 1987.

    Article  PubMed  CAS  Google Scholar 

  59. Shaw, G.; Kamen, R. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667; 1986.

    Article  PubMed  CAS  Google Scholar 

  60. Smeland, E.; Godal, T.; Ruud, E., et al. The specific induction ofmyc proto-oncogene expression in normal human B cells is not a sufficient event for acquisition of competence to proliferate. Proc. Natl. Acad. Sci. USA 82: 6255–6259; 1985.

    Article  PubMed  CAS  Google Scholar 

  61. Smith, J. C.; Stiles, C. D. Cytoplasmic transfer of the mitogenic response to platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 78: 4363–4367; 1981.

    Article  PubMed  CAS  Google Scholar 

  62. Sorrentino, V.; Drozdoff, V.; McKinney, M. D., et al. Potentiation of growth factor activity by exogenous c-myc expression. Proc. Natl. Acad. Sci. USA 83: 8167–8171; 1986.

    Article  PubMed  CAS  Google Scholar 

  63. Stern, D. F.; Roberts, A. B.; Roche, N. S., et al. Differential responsiveness ofmyc- andras-transfected cells by epidermal growth factor. Mol. Cell. Biol. 6: 870–877; 1986.

    PubMed  CAS  Google Scholar 

  64. Stiles, C. D.; Capone, G. T.; Scher, C. D., et al. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 76: 1279–1283; 1979.

    Article  PubMed  CAS  Google Scholar 

  65. Studzinski, G. P.; Brelvi, Z. S.; Feldman, S. C., et al. Participation of c-myc protein in DNA synthesis of human cell. Science 234: 467–470; 1986.

    Article  PubMed  CAS  Google Scholar 

  66. Swartwout, S. G.; Preisler, H.; Guan, W., et al. Relatively stable population of c-myc RNA that lacks long poly(A). Mol. Cell. Biol. 7: 2052–2058; 1987.

    PubMed  CAS  Google Scholar 

  67. Taub, R.; Roy, A.; Dieter, R., et al. Insulin as a growth factor in rat hepatoma cell. J. Biol. Chem. 262: 10893–10897; 1987.

    PubMed  CAS  Google Scholar 

  68. Taylor, M. V.; Metcalf, J. V.; Hesketh, T. R., et al. Mitogens increased phosphorylation of phosphoinositides in thymulytes. Nature 312: 462–465; 1984.

    Article  PubMed  CAS  Google Scholar 

  69. Thompson, C. B.; Challoner, P. B.; Neiman, P. E., et al. Levels of c-myc oncogene mRNA are invariant throughout the cell cycle. Nature 314: 363–366; 1985.

    Article  PubMed  CAS  Google Scholar 

  70. Tramontano, D.; Chin, W. W.; Moses, A. C., et al. Thyrotropin and dibutyryl cyclic AMP increase levels of c-myc and c-fos mRNAs in cultured rat thyroid cells. J. Biol. Chem. 261: 3919–3922; 1986.

    PubMed  CAS  Google Scholar 

  71. Treisman, R. Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences. Cell 42: 889–902; 1985.

    Article  PubMed  CAS  Google Scholar 

  72. Treisman, R. Identification of a protein binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell 46: 567–574; 1986.

    Article  PubMed  CAS  Google Scholar 

  73. Truneh, A.; Albert, F.; Golstein, P., et al. Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Nature 313: 318–320; 1985.

    Article  PubMed  CAS  Google Scholar 

  74. Vennstrom, B.; Kahn, P.; Adkins, B., et al. Transformation of mammalian fibroblasts and macrophagesin vitro by a murine retrovirus encoding an avian v-myc oncogene. EMBO J. 3: 3223–3229; 1984.

    PubMed  CAS  Google Scholar 

  75. Zullo, J. N.; Cochran, B. H.; Huang, A. S., et al. Platelet-derived growth factor and double-stranded ribonucleic acids stimulate expression of the same genes in 3T3 cells. Cell 43: 793–800; 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rollins, B.J., Stiles, C.D. Regulation of c-myc and c-fos proto-oncogene expression by animal cell growth factors. In Vitro Cell Dev Biol 24, 81–84 (1988). https://doi.org/10.1007/BF02623883

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623883

Key words

Navigation