Skip to main content
Log in

Production of rat monoclonal antibody from rat x mouse hybridoma cell lines using microencapsulation technology

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

The cell growth and monoclonal antibody production characteristics of two rat x mouse heterohybridoma cell lines, designated 187.1 and M1/9.3, were investigated using a biocompatible microencapsulation technology. Both cell lines, derived from the fusion of immunized rat spleen cells with either the NS1 or X63Ag8.653 myeloma cell lines, were found to reach a maximum intracapsular cell density of 1.3 to 1.5×107 cells/ml during a 27-d culture period. During this period, rat monoclonal antibody accumulated in the intracapsular space of both cultures to a final concentration of 2.0 to 2.8 mg/ml. Comparison of the concentration of rat monoclonal antibody in the extracapsular vs. the intracapsular space of both cultures indicated that significantly less than 1% of the antibody produced by the encapsulated hybridoma cells was capable of transiting the microcapsule membrane during the culture period. Due to the partition of the rat monoclonal antibody within the intracapsular space, the initial purity of the antibody harvested from 21-d microcapsule cultures of 187.1 and M1/9.3 cells was approximately 48 and 75% by weight, respectively. Analysis of the intracapsular protein by sodium dodecyl sulfoxide gel electrophoresis at different times during the culture period demonstrated that the principal contaminant associated with the unpurified antibody was bovine serum albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arathoon, W. R.; Birch, J. R. Large-scale cell culture in biotechnology. Science 232:1390–1395; 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Chapuis, B.; Helg, C.; Maurice, P., et al. Transplantation of allogeneic bone marrow treatedin vitro with Campath-1 monoclonal antibody. Schweiz. Med. Wochenschr. 115:1521–1522; 1985.

    PubMed  CAS  Google Scholar 

  3. Davignon, D.; Martz, E.; Reynolds, T., et al. Lymphocyte function-associated antigen 1 (LFA-1): A surface antigen distict from Lyt-2,3 that participates in T lymphocyte-mediated killing. Proc. Natl. Acad. Sci. USA 78:4535–4539; 1981.

    Article  PubMed  CAS  Google Scholar 

  4. Duff, R. G. Microencapsulation technology: a novel method for monoclonal antibody production. Trends Biotechnol. 3:167–170; 1985.

    Article  Google Scholar 

  5. Feder, J.; Tolbert, W. R. Perfusion systems for plant scale mammalian cell culture production. Pharm. Engineering 5:23–49; 1985.

    Google Scholar 

  6. Jarvis, A. P.; Grdina, T. A. Production of biologicals from microencapsulated living cells. Bio Techniques 1:17–22; 1983.

    Google Scholar 

  7. Jarvis, A. P.; Grdina, T. A.; Sullivan, M. F. Growth and hemoglobin synthesis in murine erythroleukemic cells propagated in high density microcapsule culture. In Vitro 23:589–596; 1986.

    Google Scholar 

  8. Kirkman, R. L.; Barett, L. V.; Gaulton, G. N., et al. The effect of anti-interleukin-2 receptor monoclonal antibody on allograft rejection. Transplantation 40:719–722; 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Kohler, G.; Milstein, C. Continuous cultures of fused cells secreting antibodies of predefined specificity. Nature 256:495–497; 1975.

    Article  PubMed  CAS  Google Scholar 

  10. Labit, C.; Pierres, M. Rat monoclonal antibodies to mouse IgG1, IgG2a, IgG2b, and IgG3 subclasses and kappa chain isotypic determinants. Hybridoma 3:163–169; 1984.

    PubMed  CAS  Google Scholar 

  11. Laemmli, U. K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–683; 1974.

    Article  Google Scholar 

  12. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  13. Lydersen, B. K.; Pugh, G. G.; Paris, M. S., et al. Ceramic matrix for large-scale animal cell culture. BioTechnology 3:63–67; 1985.

    Article  Google Scholar 

  14. Maloney, D. G.; Kaminski, M. S.; Burowski, D., et al. Monoclonal anti-idotype antibodies against the murine B cell lymphoma 38C13: Characterization and use of probes for the biology of the tumorin vivo andin vitro. Hybridoma 4:191–209; 1985.

    PubMed  CAS  Google Scholar 

  15. Posillico, E. G. Microencapsulation technology for large-scale antibody production. Bio Technology 4:114–117; 1986.

    CAS  Google Scholar 

  16. Rupp, R. G. Use of cellular microencapsulation in large-scale production of monoclonal antibodies. In: Fader, J.; Tolbert, W., eds. Large-scale mammalian cell culture. New York: Academic Press; 1985; 19–38.

    Google Scholar 

  17. Salstrom, J. S.; Chadfield, R. C.; Murphy, T. J. Cellular Engineering: A new potential for molecular and cell biology. Bio Techniques 2:103–105; 1984.

    Google Scholar 

  18. Thierfelder, S.; Cobbold, S.; Kummer, U., et al. Anti-lymphocytic antibodies and marrow transplantation. VII. Two of nine monoclonal anti-Thy-1 antibodies used for pretreatment of donor marrow suppressed graft-versus-host reactions without added compliment. Exp. Hematol. 13:948–955; 1985.

    PubMed  CAS  Google Scholar 

  19. Waldmann, H.; Polliak, A.; Hale, G., et al. Elimination of graftversus-host disease byin vitro depletion of lymphocytes with a monoclonal antibody (CAMPATH-1). Lancet 2:483–486; 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Weber, K.; Osborne, M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244:4406–4412; 1971.

    Google Scholar 

  21. Weiss, S.; Lahmann, K.; Cohn, M. Monoclonal antibodies to murine immunoglobulin isotypes. Hybridoma 2:49–54; 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Wofsy, D. Administration of monoclonal anti-T cell antibodies retards murine lupus in BXSB mice. J. Immunol. 136:4554–4560; 1986.

    PubMed  CAS  Google Scholar 

  23. Yelton, D. E.; Desaymard, C.; Scharf, M. D. Use of monoclonal anti-mouse immunoglobulin to detect mouse antibodies. Hybridoma 1:5–11; 1981.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilligan, K.J., Littefild, S. & Jarvis, A.P. Production of rat monoclonal antibody from rat x mouse hybridoma cell lines using microencapsulation technology. In Vitro Cell Dev Biol 24, 35–41 (1988). https://doi.org/10.1007/BF02623813

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623813

Key words

Navigation