Skip to main content
Log in

Influence of cell culture conditions on aromatase activity in human genital skin fibroblasts

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Because the measurement of aromatase activity in cultured human genital skin fibroblasts has been proposed as a means of studying estrogen production in men, we investigated the influence of culture conditions on aromatase activity.

Genital skin fibroblasts were seeded onto culture plates at a density of 1×106 cells/plate and aromatase activity was determined over a 1-mo. period. Enzyme activity rose slowly over the first 14 d but then rose rapidly to a 10-fold higher plateau by Day 28. The rise in aromatase activity was similar whether activity was normalized for protein or for DNA content. When cells were seeded at the usual density of 1×106 or at 0.25×106 cells/plate, aromatase activity was consistently lower during the first 2 wk in cells plated at lower density, but thereafter the levels of enzyme activity in the two groups converged. In cells plated at the lower density, the lower activity observed in the first 2 wk was associated with a lower V max . Preincubation of cells plated at one density with conditoned medium from cells plated at the other density did not change the relatve levels of activity in the two groups. By contrast, dihydrotestosterone (DHT) receptor binding and 5α-reductase activity were similar at all time points, despite differences in plating density.

In additional experiments, the culture medium was replaced daily rather than every 3rd d, and aromatase activity was assayed on Day 7. In cells fed daily, DNA and protein content were twice that of cells fed every 3rd d. By contrast, aromatase activity declined to 30% of the in the latter group. DHT and dexamethasone receptor binding and 5α-reductase activity were similar in the two groups.

In summary, factors such as plating density, culture density, and frequency of media replacement dramatically influence aromatase activity in cultured human genital skin fibroblasts. Therefore, the interpretation of aromatase activity data obtained from cultured cells in relation to physiologic or pathologic states should be viewed with appropriate caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hemsell, D. L.; Edman, C. D.; Marks, J. F., et al. Massive extraglandular aromatization of plasma androstenedione resulting in feminization of a prepubertal boy. J. Clin. Invest. 60:455–464; 1977.

    PubMed  CAS  Google Scholar 

  2. Berkovitz, G. D.; Guerami, A.; Brown, T. R., et al. Familial gynecomastia with increased extraglandular aromatization of plasma C19-steroids. J. Clin. Invest. 75:1763–1769; 1985.

    PubMed  CAS  Google Scholar 

  3. Schweikert, H. U.; Milewich, L.; Wilson, J. D. Aromatization of androstenedione by cultured human fibroblasts. J. Clin. Endocrinol. Metab. 43:785–795; 1986.

    Google Scholar 

  4. Walsh, P. C. Human benig prostatic hyperplasia: etiologic considerations. In: Kimble, F. A.; Buhl, A. E.; Carter, D. B., eds. New approaches to the study of benign prostatic hyperplasia. New York: Arthur Liss, Inc.; 1984:1.

    Google Scholar 

  5. Vigersky, R. A.; Glass, A. R. Effect of δ-testolactone on the pituitary-testicular axis in oligospermic men. J. Clin. Endocrinol. Metab. 52:897–902; 1981.

    PubMed  CAS  Google Scholar 

  6. Sherins, R. J.; Clark, R. V. Elevated estradiol prevents completion of spermatogenesis in hypogonadotropic men treated with hCG alone. Program of the 65th Annual Meeting of the Endocrine Society, San Antonio, TX. Abstract; 1983:941.

  7. MacDonald, P. C.; Rombaut, R. P.; Siiteri, P. K. Plasma precursors of estrogen. Extent of conversion of plasma androstenedione to estrone in normal males and non-pregnant normal, castrate and adrenalectomized females. J. Clin. Endocrinol. Metab. 27:1103–1111; 1967.

    PubMed  CAS  Google Scholar 

  8. MacDonald, P. C.; Madden, J. D.; Brenner, P. E., et al. Origin of estrogen in normal men and in women with testicular feminization. J. Clin. Endocrinol. Metab. 49:905–916; 1979.

    PubMed  CAS  Google Scholar 

  9. Longcope, C.; Kato, T.; Horton, R. Conversion of blood androgens to estrogens in normal adult men and women. J. Clin. Invest. 48:2191–2201; 1969.

    Article  PubMed  CAS  Google Scholar 

  10. Longcope, C.; Pratt, J. H.; Schneider, S. H., et al. Aromatization of androgens by muscle and adipose tissuein vivo. J. Clin. Endocrinol. Metab. 46:146–152; 1978.

    PubMed  CAS  Google Scholar 

  11. Ackerman, G. E.; Smith, M. E.; Mendelson, C. R., et al. Aromatization of androstenedione by human adipose tissue stromal cells in monolayer culture. J. Clin. Endocrinol. Metab. 53:412–417; 1981.

    PubMed  CAS  Google Scholar 

  12. Grodin, J. M.; Siiteri, P. K.; MacDonald, P. C. Source of estrogen production in postmenopausal women. J. Clin. Endocrinol. Metab. 36:207–214; 1973.

    PubMed  CAS  Google Scholar 

  13. Berkovitz, G. D.; Fujimoto, M.; Brown, T. R., et al. Aromatase activity in cultured human genital skin fibroblasts. J. Clin. Endocrinol. Metab. 59:665–671; 1984.

    PubMed  CAS  Google Scholar 

  14. Fujimoto, M.; Berkovitz, G. D.; Brown, T. R., et al. Time dependent biphasic response of aromatase to dexamethasone in cultured human skin fibroblasts. J. Clin. Endocrinol. Metab. 63:468–474; 1986.

    PubMed  CAS  Google Scholar 

  15. Berkovitz, G. D.; Carter, K. M.; Migeon, C. J., et al. Down regulation of the glucocorticoid receptor in cultured human skin fibroblasts: implications for the regulation of aromatase activity. J. Clin. Endocrinol. Metab. 66:1029–1036; 1988.

    PubMed  CAS  Google Scholar 

  16. Chabab, A.; Sultan, C. Increased peripheral aromatase activity in prepubertal children with partial androgen insensitivity syndrome. Horm. Res. 22:83–88; 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Bulard, J.; Mowszowicz, I.; Schaison, G. Increased aromatase activity in pubic skin fibroblasts from patients with isolated gynecomastia. J. Clin. Endocrinol. 64:618–623; 1987.

    CAS  Google Scholar 

  18. Orly, J.; Sato, G.; Erickson, G. F. Serum suppresses the expression of hormonally induced functions in cultured granulosa cells. Cell 20:817–827; 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Dorrington, J. H.; McKeracher, H. L.; Chan, A. K., et al. Hormonal interactions in the control of granulosa cell differentiation. J. Steroid. Biochem. 19:17–32; 1983.

    PubMed  CAS  Google Scholar 

  20. Weinberger-Ohana, P.; Shoshani, R.; Farkash, Y., et al. Low molecular weight substance from rat ovary induces steroidogenesis in cultured granulosa cells. Mol. Cell. Endocrinol. 36:141–155; 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Epstein-Almog, R.; Orly, J. Inhibition of hormone-induced steroidogenesis during cell proliferation in serum-free cultures of rat granulosa cells. Endocrinology 116:2103–2112; 1985.

    PubMed  CAS  Google Scholar 

  22. Goldring, N. B.; Farkash, Y.; Goldschmit, D., et al. Immunofluorescent probing of the mitochondrial cholesterol side-chain cleavage cytochrome P-450 expressed in differentiating granulosa cells in culture. Endocrinology 119:2821–2832; 1986.

    PubMed  CAS  Google Scholar 

  23. Brown, T. R.; Migeon, C. J. Cultured human skin fibroblasts: a model for the study of androgen action. Mol. Cell. Biochem. 36:3–22; 1981.

    Article  PubMed  CAS  Google Scholar 

  24. Thompson, E. A., Jr. Siiteri, P. K. Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J. Biol. Chem. 294:5367–5372; 1974.

    Google Scholar 

  25. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  26. Burton, K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62:315–323; 1956.

    PubMed  CAS  Google Scholar 

  27. Mendelson, C. R.; Cleland, W. H.; Smith, M. E., et al. Regulation of aromatase activity of stromal cells derived from human adipose tissue. Endocrinology 11:1077–1085; 1982.

    Google Scholar 

  28. Mendelson, C. R.; Corbin, J.; Smith, M. E., et al. Growth factors suppress and phorbol esters potentiate the action of dibutyryl adenosine 3′,5′-monophosphate to stimulate aromatase activity of human adipose stromal cells. Endocrinology 118:968–973; 1986.

    PubMed  CAS  Google Scholar 

  29. Hornowski, L.; Anastassiades, T. P. The effect of cell density on net rates of glycosaminoglycan synthesis and secretion by cultured rat fibroblasts. J. Biol. Chem. 255:10091–10099; 1980.

    Google Scholar 

  30. Mian, N. Analysis of cell-growth-phase-related variations in hyaluronate synthase activity of isolated plasma-membrane fractions of cultured human skin fibroblasts. Biochem. J. 237:333–342; 1986.

    PubMed  CAS  Google Scholar 

  31. Kazlauskas, A.; DiCorleto, P. E. A comparison of the platelet-derived growth factor-dependent tyrosine kinase activity in sparse and confluent fibroblasts. J. Cell. Physiol. 126:225–236; 1986.

    Article  PubMed  CAS  Google Scholar 

  32. Hopwood, J. J.; Dorfman, A. Glycosaminoglycan synthesis by cultured human skin fibroblasts after transformation with simian virus 40. J. Biol. Chem. 252:4777–4785; 1977.

    PubMed  CAS  Google Scholar 

  33. Skinner, M. K.; McKeracher, H. L.; Dorrington, J. H. Fibronectin as a marker of granulosa cell cytodifferentiation. Endocrinology 117:886–892; 1985.

    PubMed  CAS  Google Scholar 

  34. Dorrington, J. H.; Skinner, M. K. Cytodifferentiation of granulosa cells induced by gonadotropin-releasing hormone promotes fibronectin secretion. Endocrinology 118:2065–2071; 1986.

    Article  PubMed  CAS  Google Scholar 

  35. Nakamura, T.; Yoshimoto, K.; Nakayama, Y., et al. Reciprocal modulation of growth and differentiated functions of mature rat hepatocytes in primary culture by cell-cell contact and cell membranes. Proc. Natl. Acad. Sci. USA 80:7229–7233; 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Otten, J.; Johnson, G. S.; Pastan, I. Regulation of cell growth by cyclic adenosine 3′,5′-monophosphate. J. Biol. Chem. 247:7082–7087; 1972.

    PubMed  CAS  Google Scholar 

  37. Froehlich, J.; Rachmeler, M. Effect of adenosine 3′,5′-cyclic monophosphate on cell proliferation. J. Cell. Biol. 55:19–31; 1972.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported in part by grants R01 DK 35339 and R01 DK 00180 from the National Institutes of Health, Bethesda, MD, and by RR 00035 from CLINFO Systems at the Johns Hopkins University School of Medicine, Baltimore, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisat, T., Brown, T.R., Migeon, C.J. et al. Influence of cell culture conditions on aromatase activity in human genital skin fibroblasts. In Vitro Cell Dev Biol 25, 806–812 (1989). https://doi.org/10.1007/BF02623664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623664

Key words

Navigation