Skip to main content
Log in

Primary culture of normal rat mammary epithelial cells within a basement membrane matrix. I. Regulation of proliferation by hormones and growth factors

  • Regular Papers
  • Published:
In Vitro Cellular &Developmental Biology Aims and scope Submit manuscript

Summary

A serum-free primary culture system has been developed which allows for three-dimensional growth and differentiation of normal rat mammary epithelial cells (RMECs) within an extracellular matrix preparation. RMECs were isolated from mamary glands of immature 50- to 60-d-old rats and the organoids embedded within a reconstituted basement membrane matrix prepared from the Engelbreth-Holm-Swarm sarcoma. Cells grown in a serum-free media consisting of phenol red-free Dulbecco's modified Eagle's medium-F12 culture medium containing 10 μg/ml insulin, 1 μg/ml prolactin, 1 μg/ml progesterone, 1 μg/ml hydrocortisone, 10 ng/ml epidermal growth factor (EGF), 1 mg/ml fatty-acid-free bovine serum albumin (BSA), 5 μg/ml transferrin, and 5 μM ascorbic acid proliferated extensively (15- to 20-fold increase in cell number as quantitated using the MTT dye assay) over a 2- to 3-wk culture period and remained viable for months in culture. Several types of colonies were observed including the alveolarlike budding cluster which predominates at later times in culture, units with no or various degrees of ductal-like projections, stellate colonies, and two-and three-dimensional web units. Optimal proliferation required insulin, prolactin, progesterone, EGF, and bovine serum albumin. Hydrocortisone was not required for proliferation, but the colonies developing in its absence were morphologically altered, with a high frequency of colonies that formed an extensively branched network with many fine projections. Cell proliferation was also dependent on substratum, with significantly less growth and development occurring in RMECs grown within a type I collagen gel matrix compared to RMECs grown within the reconstituted basement membrane. In conjunction with other studies demonstrating extensive differentiation as well as proliferation, it is concluded that this model should prove to be an improtant tool to study the hormonal regulation of the growth and development of rat mammary cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banerjee, M. R.; Antoniou, M. Serum-free culture of the isolated whole mammary organ of the mouse: a model for the study of differentiation and carcinogenesis. In: Barnes, D. W.; Sirbasku, D. A.; Sato, G. H., eds. Methods for serum-free culture of cells of the endocrine system. New York: Alan R. Liss, Inc.; 1984:143–169.

    Google Scholar 

  2. Blum, J. L.; Zeigler, M. E.; Wicha, M. S. Regulation of rat mammary gene expression by extracellular matrix components. Exp. Cell Res. 173:322–340; 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Coleman, S.; Silberstein, G. B.; Daniel, C. W. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev. Biol. 127:304–315; 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Deeks, S.; Richards, J.; Nandi, S. Maintenance of normal rat mammary epithelial cells by insulin and insulin-like growth factor 1. Exp. Cell Res. 174:448–460; 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Durban, E. M.; Medina, D.; Butel, J. S. Comparative analysis of casein synthesis during mammary cell differentiation in collagen and mammary gland development in vivo. Dev. Biol. 109:288–298; 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Edery, M.; Imagawa, W.; Larson, L., et al. Regulation of estrogen and progesterone receptor levels in mouse mammary epithelial cells grown in serum-free collagen gel cultures. Endocrinology 116:105–112; 1984.

    Google Scholar 

  7. Edery, M.; McGrath, M.; Larson, L., et al. Correlation betweenin vitro growth and regulation of estrogen and progesterone receptors in rat mammary epithelial cells. Endocrinology 115:1691–1697; 1984.

    PubMed  CAS  Google Scholar 

  8. Emerman, J. T.; Enami, J.; Pitelka, D. R., et al. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc. Natl. Acad. Sci. USA 74:4466–4470; 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Emerman, J. T.; Pitelka, D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316–328; 1977.

    Article  PubMed  CAS  Google Scholar 

  10. Ethier, S. P. Serum-free culture conditions for the growth of normal rat mammary epithelial cells in primary culture. In Vitro Cell. Dev. Biol. 22:485–490; 1986.

    PubMed  CAS  Google Scholar 

  11. Ethier, S. P.; Kudla, A.; Cundiff, K. C. Influence of hormone and growth factor interactions on the proliferative potential of normal rat mammary epithelial cells in vitro. J. Cell. Physiol. 132:161–167; 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Hahm, H. A.; Ip, M. M.; Darcy, K., et al. Primary culture of normal rat mammary epithelial cells within a basement membrane matrix. II. Functional differentiation under serum-free conditions. In Vitro Cell. Dev. Biol. 26:803–814; 1990.

    PubMed  CAS  Google Scholar 

  13. Hamamoto, S.; Imagawa, W.; Yang, J., et al. Morphogenesis of mouse mammary epithelial cells growing within collagen gels: ultrastructural and immunocytochemical characterization. Cell Differ. 22:191–202; 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Hammond, S. L.; Ham, R. G.; Stampfer, M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA 81:5435–5439; 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Haslam, S. Z. Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogenin vitro. Cancer Res. 46:310–316; 1986.

    PubMed  CAS  Google Scholar 

  16. Hinegardner, R. T. An improved fluorometric assay for DNA. Anal. Biochem. 30:197–201; 1971.

    Article  Google Scholar 

  17. Imagawa, W.; Tomooka, Y.; Hamamoto, S., et al. Stimulation of mammary epithelial cell growth in vitro: interaction of epidermal growth factor and mammogenic hormones. Endocrinology 116:1514–1524; 1985.

    PubMed  CAS  Google Scholar 

  18. Imagawa, W.; Tomooka, Y.; Nandi, S. Serum-free growth of normal and tumor mouse mammary epithelial cells in primary culture. Proc. Natl. Acad. Sci. USA 79:4074–4077; 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Ip, M. M.; Milholland, R. J.; Rosen, F., et al. Mammary cancer: selective action of the estrogen receptor complex. Science 203:361–363; 1979.

    Article  PubMed  CAS  Google Scholar 

  20. Kidwell, W. R.; Bano, M.; Salomon, D. S. Growth of normal mammary epithelium on collagen in serum-free medium. In: Barnes, D. W.; Sirbasku, D. A.; Sato, G. H., eds. Methods for serum-free culture of cells of the endocrine system. New York: Alan R. Liss, Inc.; 1984:105–125.

    Google Scholar 

  21. Kidwell, W. R.; Salomon, D. S.; Liotta, L. A., et al. Effects of growth factors on mammary epithelial cell proliferation and basement membrane synthesis. In: Barnes, D.; Sato, G., eds. Growth of cells in hormonally defined medium, vol. 2. New York: Alan R. Liss, Inc.; 1984:807–818.

    Google Scholar 

  22. Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, E. Y. H.; Barcellos-Hoff, M.; Chen, L. H., et al. Transferrin is a major mouse milk protein and is synthesized by mammary epithelial cells. In Vitro Cell. Dev. Biol. 23:221–226; 1987.

    PubMed  CAS  Google Scholar 

  24. Lee, E. Y.-H.; Lee, W.-H.; Kaetzel, C. S., et al. Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. USA 82:1419–1423; 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Levay-Young, B. K.; Bandyopadhyay, G. K.; Nandi, S. Linoleic acid, but not cortisol, stimulates accumulation of casein by mouse mammary epithelial cells in serum-free collagen gel culture. Proc. Natl. Acad. Sci. USA 84:8448–8452; 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Li, M. L.; Aggeler, J.; Farson, D. A., et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84:136–140; 1987.

    Article  PubMed  CAS  Google Scholar 

  27. McGrath, M.; Palmer, S.; Nandi, S. Differential response of normal rat mammary epithelial cells to mammogenic hormones and EGF. J. Cell. Physiol. 125:182–191; 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J. Immunol. Methods 65:55–63; 1983.

    Article  PubMed  CAS  Google Scholar 

  29. Richards, J.; Imagawa, W.; Balakrishnan, A., et al. The lack of effect of phenol red or estradiol on the growth response of human, rat and mouse mammary cells in primary culture. Endocrinology 123:1335–1340; 1988.

    PubMed  CAS  Google Scholar 

  30. Richards, J.; Larson, L.; Yang, J., et al. Method for culturing mammary epithelial cells in a rat tail collagen gel matrix. J. Tissue Cult. Methods 8:31–36; 1983.

    Article  Google Scholar 

  31. Richards, J.; Pasco, D.; Yang, J., et al. Comparison of the growth of normal and neoplastic mouse mammary cells on plastic, on collagen gels and in collagen gels. Exp. Cell. Res. 146:1–14; 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Rozengurt, E.; Heppel, L. A. Serum rapidly stimulates ouabainsensitive86Rb+ influx in quiescent 3T3 cells. Proc. Natl. Acad. Sci. USA 72:4492–4495; 1975.

    Article  PubMed  CAS  Google Scholar 

  33. Salomon, D. S.; Liotta, L. A.; Kidwell, W. R. Differential response to growth factor by rat mammary epithelium plated on different collagen substrata in serum-free medium. Proc. Natl. Acad. Sci. USA 78:382–386; 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Sanford, K. K.; Earle, W. R.; Evans, V. J., et al. The measurement of proliferation in tissue cultures by enumeration of cell nuclei. JNCI 11:773–795; 1950.

    Google Scholar 

  35. Shannon, J. M.; Pitelka, D. R. The influence of cell shape on the induction of functional differentiation in mouse mammary cells in vitro. In Vitro 17:1016–1028; 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Sheffield, L. G.; Welsch, C. W. Influence of submandibular salivary glands on hormone responsiveness of mouse mammary glands. Proc. Soc. Exp. Biol. Med. 186:368–377; 1987.

    PubMed  CAS  Google Scholar 

  37. Taketani, Y.; Oka, T. Epidermal growth factor stimulates cell proliferation and inhibits functional differentiation of mouse mammary epithelial cells in culture. Endocrinology 113:871–877; 1983.

    Article  PubMed  CAS  Google Scholar 

  38. Taketani, Y.; Oka, T. Biological action of epidermal growth factor and its functional receptors in normal mammary epithelial cells. Proc. Natl. Acad. Sci. USA 80:2647–2650; 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Tonelli, Q. J.; Sorof, S. Epidermal growth factor requirement for development of cultured mammary gland. Nature 285:250–252; 1980.

    Article  PubMed  CAS  Google Scholar 

  40. Tonelli, Q. J.; Sorof, S. Induction of biochemical differentiation in three-dimensional collagen cultures of mammary epithelial cells from virgin mice. Differentiation 22:195–200; 1982.

    Article  PubMed  CAS  Google Scholar 

  41. Topper, Y. J.; Freeman, C. S. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1106; 1980.

    PubMed  CAS  Google Scholar 

  42. Twentyman, P. R.; Luscombe, M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer 56:279–285; 1987.

    PubMed  CAS  Google Scholar 

  43. Vonderhaar, B. K. Local effects of EGF, αTGF, and EGF-like growth factors on lobuloalveolar development of the mouse mammary glandin vivo. J. Cell. Physiol. 132:581–584; 1987.

    Article  PubMed  CAS  Google Scholar 

  44. Wicha, M. S.; Lowrie, G.; Kohn, E., et al. Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc. Natl. Acad. Sci. USA 79:3213–3217; 1982.

    Article  PubMed  CAS  Google Scholar 

  45. Yang, J.; Larson, L.; Flynn, D., et al. Serum-free primary culture of human normal mammary epithelial cells in collagen gel matrix. Cell Biol. Int. Rep. 6:969–975; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants CA 33240 and CA 35641 and by core grant CA 24538 from the National Institutes of Health, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahm, H.A., Ip, M.M. Primary culture of normal rat mammary epithelial cells within a basement membrane matrix. I. Regulation of proliferation by hormones and growth factors. In Vitro Cell Dev Biol 26, 791–802 (1990). https://doi.org/10.1007/BF02623621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623621

Key words

Navigation