Skip to main content
Log in

Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Highly contractile skeletal myotubes differentiated in tissue culture are normally difficult to maintain on collagen-coated tissue culture dishes for extended periods because of their propensity to detach as a sheet of cells from their substratum. This detachment results in the release of mechanical tension in the growing cell “sheet” and, consequently, loss of cellular protein. We developed a simple method of culturing high density contractile primary avian myotubes embedded in a collagen gel matrix (collagel) attached to either a stainless steel mesh or nylon support structure. With this system the cells are maintained in a highly contractile state for extended periods in vitro under tension. Structural integrity of the myotubes can be maintained for up to 10 d in basal medium without serum or embryo extract. Total cellular protein and myosin heavy chain accumulation in the cells can be maintained for weeks at levels which are two to three times those found in timematched controls that are under little tension. Morphologically, the myotubes are well differentiated with structural characteristics of neonatal myofibers. This new collagel culture system should prove useful in the analysis of in vitro gene expression during myotube to myofiber differentiation and its regulation by various environmental factors such as medium growth factors, innervation, and mechanical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashmore, C. R.; Summers, P. J. Stretch-induced growth in chicken wing muscles: Myofibrillar proliferation. Am. J. Physiol. 51:C93-C97; 1981.

    Google Scholar 

  2. Bell, E.; Ivarsson, B.; Merrill, C. Production of tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro. Proc. Natl. Acad. Sci USA 76:1274–1278; 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Buckingham, M. Muscle cells in tissue culture. Int. Rev. Biochem. 15:315–322; 1977.

    Google Scholar 

  4. Buckingham, M. E. Actin and myosin multigene families: Their expression during the formation of skeletal muscle. Essays Biochem. 20:77–109; 1985.

    PubMed  CAS  Google Scholar 

  5. Caplan, A. I.; Fitzman, M. Y.; Eppenberger, H. M. Molecular and cell isoforms during development. Science 221:921–927; 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Chambard, M.; Gabron, J.; Mauchamp, J. Influence of collagen gel on the orientation of epithelial cell polarity: Follicle formation from isolated thyroid cells and from preformed monolayers. J. Cell Biol. 91:157–166; 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Coleman, J. R.; Coleman, A. W. Muscle differentiation and macromolecular synthesis. J. Cell. Physiol. 72:19–34; 1968.

    Article  PubMed  CAS  Google Scholar 

  8. De la Haba G.; Kamali, H. M.; Tiede, D. M. Myogenesis of avian striated musclein vitro: Role of collagen in myofiber formation. Proc. Natl. Acad. Sci. USA 72:2729–2732; 1975.

    Article  PubMed  Google Scholar 

  9. Ecob, M.; Butler-Browne, G. S.; Whalen, R. G. The adult fast isozyme of myosin is present in a nerve-muscle tissue culture system. Differentiation 25:84–87; 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Fambrough, D. M.; Bayne, E. K.; Gardner, J. M., et al. Monoclonal antibodies to skeletal muscle cell surface. In: Brockes, J., ed.Neuroimmunology, New York: Plenum Press; 1982: 49–89.

    Google Scholar 

  11. Fischman, D. A. Myofibrillar assembly in skeletal muscle. In: Bourne, G. H., ed. The structure and function of muscle. vol. 1. New York: Academic Press; 1973:75–148.

    Google Scholar 

  12. Gardner, J. M.; Fambrough D. Fibronectin expression during myogenesis. J. Cell Biol. 96:474–485; 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Hall, H. G.; Farson, D. A.; Bissell, M. J. Human formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture. Proc. Natl. Acad. Sci. USA 79:4672–4676; 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Hay, E. D. Cell biology of the extracellular matrix. New York: Plenum Press; 1982.

    Google Scholar 

  15. Hauschka S. D.; Konigsberg, I. R. The influence of collagen on the development of muscle clones. Proc. Natl. Acad. Sci USA 55:119–126; 1966.

    Article  PubMed  CAS  Google Scholar 

  16. Jablecki, C.; Kaufman, S. Myosin adenosine triphosphatase activity during work-induced growth of slow and fast skeletal muscle in the normal rat. J. Biol. Chem. 248:1056–1062; 1973.

    PubMed  CAS  Google Scholar 

  17. Kelly, A. M.; Zacks, S. I. The histogenesis of rat intercostal muscle. J. Cell Biol. 42:135–153; 1969.

    Article  PubMed  CAS  Google Scholar 

  18. Kleinman, H. K.; Klebe, R. J.; Martin, G. R. Role of collagenous matrices in the adhesion and growth of cells. J. Cell Biol. 88:473–485; 1981.

    Article  PubMed  CAS  Google Scholar 

  19. Konigsberg, I. R.; McElvain, N.; Tootle, M., et al. The dissociability of DNA synthesis from the development of multinuclearity of muscle cell in culture. J. Biophys. Biochem. Cytol. 8:333–343; 1960.

    Article  PubMed  CAS  Google Scholar 

  20. Konigsberg, I. R. Diffusion-mediated control of myoblast fusion. Dev. Biol 26:133–152; 1971.

    Article  PubMed  CAS  Google Scholar 

  21. Labarca, C.; Paigen, K. A simple rapid and sensitive DNA assay procedure. Anal. Biochem. 102:344–352; 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1954.

    Google Scholar 

  23. Moss, P. S.; Spector, D. H.; Glass, C. A., et al. Streptomycin retards the phenotypic maturation of chick myogenic cells. In Vitro 20:473–478; 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Murray, M. R. Skeletal muscle in culture. In: Bourne, G. H., ed. Structure and function of muscle, vol. I, part I. New York: Academic Press; 1972: 237–299.

    Google Scholar 

  25. Paterson, B.; Strohman, R. C. Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle. Dev. Biol. 29:113–138; 1972.

    Article  PubMed  CAS  Google Scholar 

  26. Sheehan, D. C.; Hrapchak, B. B. Theory and practice of histochemistry, 2nd ed. St. Louis: C. V. Mosby Co.; 1980: 143.

    Google Scholar 

  27. Stockdale, F. E.; Holtzer, H. DNA synthesis and myogenesis. Exp. Cell Res. 24:508–520; 1961.

    Article  PubMed  CAS  Google Scholar 

  28. Vandenburgh, H. H. Separation of plasma membrane markers by glycerol-induced blistering of muscle cells. Biochem. Biophsy. Acta 466:302–314; 1977.

    Article  CAS  Google Scholar 

  29. Vandenburgh, H. H.; Kaufman, S.In Vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265–268; 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Vandenburgh, H. H. Cell shape and growth regulation in skeletal muscle: exogenous versus endogenous factors. J. Cell Physiol. 116:363–371; 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Vandenburgh, H. H. Relationship of muscle growthin vitro to sodium pump activity and transmembrane potential. J. Cell Physiol. 119:283–295; 1984.

    Article  PubMed  CAS  Google Scholar 

  32. Walker, C.; Strohman, R. Myosin turnover in cultured muscle fibers relaxed by tetrodotoxin. Exp. Cell Res. 116:341–348; 1978.

    Article  PubMed  CAS  Google Scholar 

  33. Waterlow, J. C.; Garlick, P. J.; Millward, D. J., Editors. Protein turnover in mammalian tissues and in the whole body. Amsterdam, Netherlands: North-Holland; 1978:529–594.

    Google Scholar 

  34. Yang, J.; Richards, J.; Bowman, P., et al. Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. USA 76:3401–3405; 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grant AM 36266 from the National Institutes of Health, Bethesda, MD, and grant NAG2-414 from the National Aeronautics and Space Administration, Washington, D.C.

Parts of this work have appeared in abstract form, In Vitro 23:24a; 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenburgh, H.H., Karlisch, P. & Farr, L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev Biol 24, 166–174 (1988). https://doi.org/10.1007/BF02623542

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623542

Key words

Navigation