Skip to main content
Log in

Free radical damage to cultured porcine aortic endothelial cells and lung fibroblasts: Modulation by culture conditions

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Culture conditions modulating cell damage from xanthine plus xanthine oxidase-derived partially reduced oxygen species were studied. Porcine thoracic aorta endothelial cells and porcine lung fibroblasts were maintained in monolayer culture. Cells were prelabeled with51Cr before xanthine plus xanthine oxidase exposure. Endothelial cells showed 30 to 100% more lysis than fibroblasts and thus seemed more sensitive to this oxidant stress. The effect of cell culture age, as indicated by population doubling level (PDL), was examined. Response of low PDL endothelial cells and fibroblasts subjected to oxidant stress was compared with the response of PDL 15 cells. Both low PDL endothelial cells and fibroblasts responded differently to the lytic effect of xanthine oxidase-derived free radicals than did higher PDL cells. Specific activities of the antioxidant enzymes catalase, managanese superoxide dismutase, copper-zinc superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase were measured in both low and high PDL fibroblasts and endothelial cells. Antioxidant enzyme specific activities could only partially explain the differences in response to oxidant stress between fibroblasts and endothelial cells and between low and high PDL cells. Cell culture medium composition modulated the rate of production, and relative proportions of xanthine plus xanthine oxidase-derived partially reduced species of oxygen, i.e. superoxide, hydrogen peroxide, and hydroxyl radical. Serum content of medium was important in modulating free radical generation; superoxide production rates decreased 32%, H2O2 became undetectable, and hydroxyl radical generation decreased 54% in the presence of 10% serum. The medium protein and iron content also modulated free radical generation. The data suggest that cell culture media constituents, cell type, and cell culture age greatly affect in vitro response of cells subjected to oxidant stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambruso, D. R.; Johnston, R. B., Jr. Lactoferin enhances hydroxyl radical production by human neutrophils, neutrophi particulate fraction, and an enzymatic generating system. J. Clin. Invest. 67: 352–360; 1981.

    PubMed  CAS  Google Scholar 

  2. Bergmeyer, H. U. Zer messung von katalase aktivitaten. Biochem. Z. 327: 255–258; 1955.

    PubMed  CAS  Google Scholar 

  3. Beutler, E.: Red cell metabolism: A manuals of biochemical methods. New York: Grune and Stratton; 1975: 71–73.

    Google Scholar 

  4. Brunner, K. T.; Enger, H. D.; Cerottini, J. C.In vitro methods in cell-mediated and tumor immunity. Bloom, B. R.; David, J. R. eds. New York: Academic Press; 1976: 423–428.

    Google Scholar 

  5. Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527–605; 1979.

    PubMed  CAS  Google Scholar 

  6. Cooper, W. J.; Zilea, R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science 220: 711–712; 1983.

    Article  CAS  PubMed  Google Scholar 

  7. Crapo, J. D.; Barry, B. E.; Foscue, H. A.; Shelburne, J. S. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am. Rev. Respir. Dis. 123: 123–143; 1980.

    Google Scholar 

  8. Crapo, J. D.; Freeman, B. A.; Barry, B. E.; Turrens, J. F.; Young, S. S. Mechanisms of hyperoxic injury to the pulmonary circulation. Physiologist 26: 170–176; 1983.

    PubMed  CAS  Google Scholar 

  9. Crapo, J. D.; McCord J. M. Oxygen induced changes in pulmonary superoxide dismutase assayed by antibody titration. Am. J. Physiol. 231: 1196–1203; 1976.

    PubMed  CAS  Google Scholar 

  10. Crapo, J. D.; Peters-Golden, M.; Marsh-Salin, J.; Shelburne, J. S. Pathological changes in the lungs of oxygen-adapted rats. Lab. Invest. 39: 640–653; 1978.

    PubMed  CAS  Google Scholar 

  11. Dawson, R. M. C.; Elliott, D. C.; Elliot, W. H.; Jones, K. M.; editors. Data for biochemical research, 2nd ed. New York: Oxford Univ. Press; 1925: 178.

    Google Scholar 

  12. Duncan, D. B. Multiple range and F test. Biometrics 11: 1–23; 1955.

    Article  Google Scholar 

  13. Fiszer-Szafarz, B.; Szafarz, D.; Guevara de Murillo, A. A general, fast and sensitive micromethod for DNA determination. Anal. Biochem. 110: 165–170; 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Freeman, B. A.; Crapo, J. D. Biology of disease: free radicals and tissue injury. Lab. Invest. 47: 412–426; 1982.

    PubMed  CAS  Google Scholar 

  15. Freeman, B. A.; Crapo, J. D. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256: 10986–10992; 1981.

    PubMed  CAS  Google Scholar 

  16. Freeman, B. A.; Topolosky, M. K.; Crapo, J. D. Hyperoxia increases oxygen radical production in rat lung homogenates. Arch. Biochem. Biophys. 216: 477–484; 1982.

    Article  PubMed  CAS  Google Scholar 

  17. Freeman, B. A.; Crapo, J. D.; Young, S. L. Liposome-mediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury. J. Biol. Chem. 258: 12523–12542; 1983.

    Google Scholar 

  18. Fox, R. B.; Hoidal, J. R.; Brown, D. M.; Repine, J. E. Pulmonary inflammation due to oxygen toxicity: involvement of chemotactic factors and polymorphonuclear leukocytes. Am. Rev. Respir. Dis. 123: 521–523; 1981.

    PubMed  CAS  Google Scholar 

  19. Goetzl, E. Oxygen toxicity in normal and neoplastic hamster cells in culture. In Vitro 11: 382–393; 1975.

    Article  Google Scholar 

  20. Hodgson, E. K.; Fridovich, I. The mechanism of the activity-dependent luminescence of xanthine oxidase. Arch. Biochem. Biophys. 172: 202–205; 1976.

    Article  PubMed  CAS  Google Scholar 

  21. Housset, B.; Junod, A. F. Effects of culture conditions and hyperoxia on antioxidant enzymes in pig pulmonary artery and aortic endothelium. Biochim. Biophys. Acta. 716: 283–289; 1982.

    PubMed  CAS  Google Scholar 

  22. Housset, B.; Ody, C.; Rubin, D. B.; Elemer, G.; Junod, A. F. Oxygen toxicity in cultured aortic endothelium: selenium-induced partial protective effect. J. Appl. Physiol. 55: 343–352; 1983.

    PubMed  CAS  Google Scholar 

  23. Jaffe, E. A.; Nachman, R. L.; Becker, C. G.; Minick, C. R. Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J. Clin. Invest. 52: 2745–2756; 1973.

    PubMed  CAS  Google Scholar 

  24. Lohr, G. W.; Waller, H. D. Methods of enzymatic analysis. Bergmeyer, H. U., ed., vol. 2. New York: Academic Press; 1974: 636.

    Google Scholar 

  25. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  26. McCord, J. M.; Fridovich, I. The biology and pathology of oxygen radicals. Ann. Intern. Med. 89: 122–127 1978.

    PubMed  CAS  Google Scholar 

  27. McCord, J. M.; Fridovich, I. The reduction of cytochromec by milk xanthine oxidase. J. Biol. Chem. 243: 5753–5760; 1968.

    PubMed  CAS  Google Scholar 

  28. Morton, H. J. A survey of commercially available tissue culture media. In Vitro 6: 89–108; 1970.

    Article  PubMed  CAS  Google Scholar 

  29. Mueller, S. N.; Rosen, E. M.; Levine, E. M Cellular senescence in a cloned strain of bovine fetal aortic endothelial cells. Science 207: 889–891; 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Pick, E.; Keisari, E. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods 38: 161–170; 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Repine, J. E.; Bowman, C. M.; Tate, R. M. Neutrophils and lung edema: state of the art. Chest 815: 475–505; 1982.

    Google Scholar 

  32. Ryan, U. S.; Clements, E.; Habliston, D.; Ryan, J. W. Isolation and culture of pulmonary artery endothelial cells. Tissue Cell 10: 535–554; 1978.

    PubMed  CAS  Google Scholar 

  33. Sagone, A. L., Jr.; Decker, M. A.; Wells, R. M.; Democko, C. A new method for the detection of hydroxyl radical production by phagocytic cell. Biochim. Biophys. Acta. 628: 90–97 1980.

    PubMed  CAS  Google Scholar 

  34. Sjostrom, K.; Crapo, J. D. Structural and biochemical adaptive changes in rat lungs after exposure to hypoxia. Lab. Invest. 48: 68–78; 1983.

    PubMed  CAS  Google Scholar 

  35. Suttorp, N.; Simon, L. M. Lung cell oxidant injury: enhancement of polymorphonuclear leukocyte-mediated cytoxicity in lung cells exposed to sustained in vivo hyperoxia. J. Clin. Invest. 70: 342–350; 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Taylor, W. G.; Camalier, R. F. Modulation of epithelial cell proliferation in culture by dissolved oxygen. J. Cell. Physiol. 111: 21–27; 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Turrens, J. F.; Freeman, B. A.; Crapo, J. D. Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch. Biochem. Biophys. 217: 411–421; 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, R. T.; Nixon, B. T. Identification of hydrogen peroxide as a photoproduct toxic to human cells in tissueculture medium irradiated with “daylight” fluorescent light. In Vitro 14: 715–722; 1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by American Lung Association Fellowship Training Grant and Research Training Grant, the R. J. Reynolds Corporation, and National Institutes of Health Grants HL29784 and 1 HL 23805.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, C.T., Mirza, Z., Crapo, J.D. et al. Free radical damage to cultured porcine aortic endothelial cells and lung fibroblasts: Modulation by culture conditions. In Vitro Cell Dev Biol 21, 229–236 (1985). https://doi.org/10.1007/BF02620934

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620934

Key words

Navigation