Skip to main content
Log in

The effects of dexamethasone on metabolic activity of hepatocytes in primary monolayer culture

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

The effects of dexamethasone on multiple metabolic functions of adult rat hepatocytes in monolayer culture were studied. Adult rat liver parenchymal cells were isolated by collagenase perfusion and cultured as a primary monolayer in HI/WO/BA, a serum free, completely defined, synthetic culture medium. Cells inoculated into the culture medium formed a monolayer within 24 hr. Electron microscopy showed that the cells in primary culture had a fine structure identical to liver parenchymal cells in vivo, including the observation of desmosomes and bile canaliculi in intercellular space. There was significant gluconeogenesis by the cell 24 hr postinoculation but it had decreased markedly by 48 hr. There was a marked induction of tyrosine aminotransferase (TAT) by dexamethasone, which was maintained for up to 72 hr postinoculation of cells. The transport of α-aminoisobutyric acid into the cells in monolayer culture was stimulated by dexamethasone and was dependent on the concentration of dexamethasone. Albumin synthesis and secretion by the cells was measured by a quantitative electroimmunoassay. Albumin production was shown to increase linearly over an incubation period of 24 to 48 hr postinoculation. Dexamethasone depressed the albumin synthesis. The effects of dexamethasone are slow, and at times require more than 6 hr to show variation from the control, indicating that dexamethasone is not a single controlling hormone. Possibly it functions in a cooperative and coordinating role in the regulation of cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chambers, J. W.; George, R. H.; Bass, A. D. Effect of hydrocortisone and insulin on uptake of α-aminoisobutyric acid by isolated perfused rat liver. Mol. Pharmacol. 1: 66–76; 1965.

    PubMed  CAS  Google Scholar 

  2. John, D. W.; Miller, L. C. Regulation of net biosynthesis of serum albumin and acute phase plasma proteins. J. Biol. Chem. 244: 6134–6142; 1969.

    PubMed  CAS  Google Scholar 

  3. Miller, L. L.; Bly, C. G.; Watson, M. L.; Bale, W. F. The dominant role of the liver in plasma protein synthesis. J. Exp. Med. 94: 431–453; 1951.

    Article  PubMed  CAS  Google Scholar 

  4. Mortimore, G. E.; Frank, T. Studies on the mechanism of capture and degradation of insulin-I131 by the cyclically perfused rat liver. Ann. N.Y. Acad. Sci. 82: 329–344; 1959.

    Article  PubMed  CAS  Google Scholar 

  5. Tews, J. K.; Colosi, N. W.; Harper, A. E. Amino acid transport and turnover of a transport system in liver slices from rats treated with glucagon and antibiotics. Life Sci. 16: 739–750; 1976.

    Article  Google Scholar 

  6. Berry, M. N.; Friend, D. S. High yield preparation of isolated rat liver parenchymal cells. A biochemical and fine structural study. J. Cell Biol. 43: 506–520; 1969.

    Article  PubMed  CAS  Google Scholar 

  7. Nakai, T.; Otto, P. S.; Kennedy, D. L.; Whayne, T. F., Jr. Rat high density lipoprotein subfraction (HDL3) uptake and catabolism by isolated rat liver parenchymal cells. J. Biol. Chem. 251: 4914–4921; 1976.

    PubMed  CAS  Google Scholar 

  8. Bissell, D. M.; Hammaker, L. E.; Meyer, V. A. Parenchymal cells from adult rat liver in nonproliferating monolayer culture. I. Functional studies. J. Cell Biol. 59: 722–734; 1973.

    Article  PubMed  CAS  Google Scholar 

  9. Bonney, R. J.; Becker, J. E.; Walker, P. R.; Potter, V. R. Primary monolayers of adult rat liver parenchymal cells suitable for study of the regulation of enzyme synthesis. In Vitro 9: 399–413; 1974.

    Article  CAS  Google Scholar 

  10. Lin, R. C.; Snodgrass, P. J. Primary culture of normal adult rat liver cells which maintain stable urea cyclic enzymes. Biochem. Biophys. Res. Commun. 64: 725–734; 1975.

    Article  PubMed  CAS  Google Scholar 

  11. Schafer, T. W.; Pascale, A.; Shimonaski, G.; Came, P. E. Evaluation of gentamicin for use in virology and tissue culture. Appl. Microbiol. 23: 565–570; 1972.

    PubMed  CAS  Google Scholar 

  12. Slein, M. W.d-Glucose: determination with hexokinase and glucose-6-phosphate dehydrogenase. Bergmeyer, H.-U. Methods of enzymatic analysis. Verlag Chemie. New York: Academic Press; 1965: 117–123.

    Google Scholar 

  13. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randell, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  14. Spencer, C. J.; Gelehrter, T. D. Pseudoisoenzymes of hepatic tyrosine aminotransferase. J. Biol. Chem. 249: 577–583; 1974.

    PubMed  CAS  Google Scholar 

  15. Kletzien, R. F.; Pariza, M. W.; Becker, J. E.; Potter, V. R. A method using 3-0-methyl-d-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Biochemistry 68: 537–544; 1975.

    CAS  Google Scholar 

  16. Laurell, C. G. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal. Biochem. 15: 45–52; 1966.

    Article  PubMed  CAS  Google Scholar 

  17. Curry, M. D.; McConathy, W. J.; Alaupovic, P.; Ledford, J. H.; Popovic, M. Determination of human apolipoprotein E by electroimmunoassay. Biochem. Biophys. Acta 439: 413–425; 1976.

    PubMed  CAS  Google Scholar 

  18. Leibovitz, A. The growth and maintenance of tissue cell cultures in free gas exchange with the atmosphere. Am. J. Hyg. 78: 173–180; 1963.

    PubMed  CAS  Google Scholar 

  19. Ham, R. G. Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc. Natl. Acad. Sci. U. S. A. 53: 288–293; 1965.

    Article  PubMed  CAS  Google Scholar 

  20. Morrison, S. J.; Jenkin, H. M. Growth ofchlamydia psittaci strain meningopneumonitis in mouse L cells cultivated in a defined medium in spinner cultures. In Vitro 8: 94–100; 1972.

    Article  PubMed  CAS  Google Scholar 

  21. Bonney, R. J. Adult rat liver parenchymal cells in primary culture characteristics and cell recognition standards. In Vitro 10: 130–142; 1974.

    Article  PubMed  CAS  Google Scholar 

  22. Laishes, B. A.; Williams, G. Conditions affecting primary cell cultures of functional adult rat hepatocytes. I. The effect of insulin. In Vitro 12: 521–532; 1976.

    PubMed  CAS  Google Scholar 

  23. Laishes, B. A.; Williams, G. Conditions affecting primary cell cultures of adult rat hepatocytes. II. Dexamethasone enhanced longevity and maintenance of morphology. In Vitro 12: 821–832; 1976.

    PubMed  CAS  Google Scholar 

  24. Michalopoulos, G.; Pitot, H. C. Primary culture of parenchymal liver cells on a collagen membrane. Exp. Cell Res. 84: 70–78; 1975.

    Article  Google Scholar 

  25. Chapman, G. S.; Jones, A. L.; Meyer, U. A.; Bissell, D. M. Parenchymal cells from adult rat liver in nonproliferating monolayer culture. II. Ultrastructural studies. J. Cell Biol. 59: 735–747; 1973.

    Article  PubMed  CAS  Google Scholar 

  26. Herdson, P. B.; Garvin, P. J.; Jennings, R. B. Fine structural changes produced in rat liver by partial starvation. Am. J. Pathol. 45: 157–181; 1964.

    PubMed  CAS  Google Scholar 

  27. Glinsman, W. H.; Ericsson, J. L. E. Observations on the subcellular organization of hepatic parenchymal cells. II. Evolution of reversible alterations induced by hypoxia. Lab. Invest. 15: 762–777; 1966.

    Google Scholar 

  28. Becker, F. F. Acute glycogenolysis: A major stimulus of autophagocytic activity in rat hepatocytes. Proc. Soc. Exp. Biol. Med. 140: 1170–1172; 1972.

    PubMed  CAS  Google Scholar 

  29. Johson, M. E. M.; Das, N. M.; Butcher, F. R.; Fain, J.N. The regulation of gluconeogenesis in isolated rat liver cells by glucagon, insulin, dibutyryl adenosine phosphate, and fatty acids. J. Biol. Chem. 247: 3229–3235; 1972.

    Google Scholar 

  30. Plas, C.; Nunez, J. Glycogenolytic response to glucagon of cultured fetal hepatocytes. J. Biol. Chem. 250: 5304–5311; 1975.

    PubMed  CAS  Google Scholar 

  31. Lin, E. C. C.; Know, W. E. Specificity of the adaptive response of tyrosine-α-ketoglutarate transaminase in the rat. J. Biol. Chem. 233: 1186–1189; 1958.

    PubMed  CAS  Google Scholar 

  32. Gerschenson, L. E.; Anderson, M.; Molson, J., Jr.; Okigaki, T. Tyrosine transaminase induction by dexamethasone in a new rat liver cell line. Science 170: 859–861; 1970.

    Article  PubMed  CAS  Google Scholar 

  33. Berg, T.; Boman, D.; Seglen, P. O. Induction of tryptophan oxygenase in primary rat liver cell suspensions by glucocorticoid hormone. Exp. Cell Res. 72: 571–574; 1972.

    Article  PubMed  CAS  Google Scholar 

  34. Schimke, R. T.; Sweeney, E. W.; Berlin, C. M. The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolase. J. Biol. Chem. 240: 322–331; 1965.

    PubMed  CAS  Google Scholar 

  35. Gelehrter, T. D. Enzyme induction (second of three parts). New Engl. J. Med. 294: 589–595; 1976.

    Article  PubMed  CAS  Google Scholar 

  36. Noall, M. W.; Riggs, T. R.; Walker, L. M.; Christensen, H. N. Endocrine control of amino acid transport distribution of an unmetabolizable amino acid. Science 126: 1002–1005; 1957.

    Article  PubMed  CAS  Google Scholar 

  37. Kaplan, S. A.; Shimizu, C. S. N. Free amino acid and amine concentrations in liver: effets of hydrocortisone and fasting. Am. J. Physiol. 202: 695–698; 1962.

    PubMed  CAS  Google Scholar 

  38. Kletzien, R. F.; Pariza, M. W.; Becker, J. E.; Potter, V. R. A “permissive” effect of dexamethasone on the glucagon induction of amino acid transport in cultured hepatocytes. Nature 256: 46–47; 1975.

    Article  PubMed  CAS  Google Scholar 

  39. Kletzien, R. F.; Pariza, M. W.; Becker, J. E.; Potter, V. R. Induction of amino acid transport in primary cultures of adult rat liver parenchymal cells by insulin. J. Biol. Chem. 251: 3014–3020; 1976.

    PubMed  CAS  Google Scholar 

  40. Risser, W. L.; Gelehrter, T. D. Hormonal modulation of amino acid transport in rat hepatoma cells in tissue culture. J. Biol. Chem. 248: 1248–1251: 1973.

    PubMed  CAS  Google Scholar 

  41. Peters, T., Jr. Serum albumin, the plasma proteins. vol. 1. Putman, F. W., ed. New York: Academic Press; 1975: 133–181.

    Google Scholar 

  42. Crane, L. J.; Miller, D. L. Plasma protein synthesis by isolated rat hepatocytes. J. Cell Biol. 72: 11–25; 1977.

    Article  PubMed  CAS  Google Scholar 

  43. Jeejeebhoy, K. N.; Robertson, A. B.; Ho, J.; Sodke, U. The effect of cortisol on rat plasma albumin, fibrinogen and transferrin. Biochem. J. 130: 533–538; 1972.

    PubMed  CAS  Google Scholar 

  44. Jeejeebhoy, K. N.; Ho, J.; Greenberg, G. R.; Phillips, M. J.; Robertson, A. B.; Sodtke, U. Albumin, fibrinogen and transferrin synthesis in isolated rat hepatocytes suspensions. A model for the study of plasma protein synthesis. Biochem. J. 146; 141–155; 1975.

    PubMed  CAS  Google Scholar 

  45. Owen, J. A. Effect of injury on plasma proteins. Adv. Clin. Chem. 9: 1–41; 1967.

    Article  PubMed  CAS  Google Scholar 

  46. Clark, I. The effect of cortisone upon protein synthesis. J. Biol. Chem. 200: 69–76; 1953.

    PubMed  CAS  Google Scholar 

  47. Solyom, A.; Bradford, R. H.; Furman, R. H. Methyltestosterone effect on apolipoprotein A and albumin metabolism in canine serum. Am. J. Physiol. 221: 1587–1595; 1971.

    PubMed  CAS  Google Scholar 

  48. Takeda, Y. Hormonal effects on metabolism and distribution of plasma albumin in the dog. Am. J. Physiol. 206: 1229–1236.

  49. Gordon, A. H. Factors influencing plasma protein synthesis by the liver. Biochem. J. 90: 18P; 1964.

    Google Scholar 

  50. Lewis, G. P.; Jusko, W. J.; Burke, C. W. Prednisolone side-effects and serum-protein levels. Lancet 2: 778–780; 1971.

    Article  PubMed  CAS  Google Scholar 

  51. Danovsky, T. S. Laboratory diagnosis of Cushing's syndrome. Danovsky, T. S., ed. Clinical endocrinology. Baltimore: Williams and Wilkins Co.; vol. IV. 1962: 133–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was performed during Dr. Yamada's tenure as a Postdoctoral Research Fellow of the American Heart Association, Oklahoma Affiliate, and was supported in part by NIH Research Grant HL 18178 awarded to Thomas F. Whayne, Jr., M.D., Ph.D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, S., Otto, P.S., Kennedy, D.L. et al. The effects of dexamethasone on metabolic activity of hepatocytes in primary monolayer culture. In Vitro 16, 559–570 (1980). https://doi.org/10.1007/BF02618379

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618379

Key words

Navigation