Skip to main content
Log in

Multivariate L-estimation

  • Published:
Test Aims and scope Submit manuscript

Abstract

In one dimension, order statistics and ranks are widely used because they form a basis for distribution free tests and some robust estimation procedures. In more than one dimension, the concept of order statistics and ranks is not clear and several definitions have been proposed in the last years. The proposed definitions are based on different concepts of depth. In this paper, we define a new notion of order statistics and ranks for multivariate data based on density estimation. The resulting ranks are invariant under affinc transformations and asymptotically distribution free. We use the corresponding order statistics to define a class of multivariate estimators of location that can be regarded as multivariate L-estimators. Under mild assumptions on the underlying distribution, we show the asymptotic normality of the estimators. A modification of the proposed estimates results in a high breakdown point procedure that can deal with patches of outliers. The main idea is to order the observations according to their likelihoodf(X 1),...,f(X n ). If the densityf happens to be cllipsoidal, the above ranking is similar to the rankings that are derived from the various notions of depth. We propose to define a ranking based on a kernel estimate of the densityf. One advantage of estimating the likelihoods is that the underlying distribution does not need to have a density. In addition, because the approximate likelihoods are only used to rank the observations, they can be derived from a density estimate using a fixed bandwidth. This fixed bandwidth overcomes the curse of dimensionality that typically plagues density estimation in high dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brown, B.M. (1983). Statistical uses of the spatial median.Journal of the Royal Statistical Society, B,45, 25–30.

    MATH  Google Scholar 

  • Brown, B.M. and T.P. Hettmansperger (1987). Affinc invariant rank methods in the bivariate location model.Journal of the Royal Statistical Society, B,49, 301–310.

    MATH  MathSciNet  Google Scholar 

  • Chaudhuri, P. (1992). Multivariate location estimation using extension of R-Estimates through U-statistics type approach.The Annals of Statistics,20, 897–916.

    MATH  MathSciNet  Google Scholar 

  • Donoho, D.L. and M. Gasko (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingnessThe Annals of Statistics,20, 1803–1827.

    MATH  MathSciNet  Google Scholar 

  • Fraiman, R. and J. Meloche (1998). Multivariate L estimation. Technical Report of the Department of Statistics at the University of British Columbia.

  • Gower, J.C. (1974). The mediancenter.Journal of the Royal Statistical Society A,23, 466–470.

    Google Scholar 

  • Hettmansperger, T.P., J. Nyblom and H. Oja (1994). Affine invariant multivariate one-sample sign tests.Journal of the Royal Statistical Society, B,56, 221–234.

    MATH  MathSciNet  Google Scholar 

  • Liu, R. (1988). On a notion of simplicial depth.Proceedings of the National Academy of Sciences, U.S.A.,85, 1732–1734.

    Article  MATH  Google Scholar 

  • Liu, R. (1990). On a notion of data depth based on random simplices.The Annals of Statistics,18, 405–414.

    MATH  MathSciNet  Google Scholar 

  • Liu, R. and K. Singh (1993). A quality index based on data depth and multivariate rank tests.Journal of the American Statistical Association,421, 252–260.

    Article  MathSciNet  Google Scholar 

  • Mahalanobis, P.C. (1936). On the generalized distance in Statistics.Proceedings of the National Academy of India,12, 49–55.

    Google Scholar 

  • Oja, H. (1983). Descriptive statistics for multivariate distributions.Statistic and Probability Letters,1, 327–332.

    Article  MATH  MathSciNet  Google Scholar 

  • Oja, H. and Nyblom, H. (1989). On bivariate sign tests.Journal of the American Statistical Association,84, 249–259.

    Article  MATH  MathSciNet  Google Scholar 

  • Rao, C.R. (1988). Methodology based onL 1-norm in statistical inference.Sankhya, A,50, 289–313.

    MATH  Google Scholar 

  • Roussceuw, P.J. (1984). Least median of squares regression.Journal of the American Statistical Association,79, 871–880.

    Article  MathSciNet  Google Scholar 

  • Rousseeuw, P.J. (1986). Multivariate estimation with high breakdown point. InMathematical Statistics and Applications (W. Grossman, G. Pfug, I. Vincze and W. Wertz eds.) Dordrecht: Reidel, 283–297.

    Google Scholar 

  • Rousseeuw, P.J. and A.M. Leroy (1987).Robust Regression and Outlier Detection. John Wiley, New York.

    Book  MATH  Google Scholar 

  • Serfling, R. (1980).Approximation Theorems of Mathematical Statistics. John Wiley, New York.

    MATH  Google Scholar 

  • Singh, K. (1991). A notion of majority depth. Technical Report, Rutgers University, Department of Statistics.

  • Small, C.G. (1990). A survey of multidimensional medians.International Statistical Review,58, 263–277.

    Article  Google Scholar 

  • Tukey, J.W. (1975). Mathematics and picturing data.Proceedings of the International Congress of Mathematics, Vancouver,2, 523–531.

    MathSciNet  Google Scholar 

References

  • Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data.Journal of the American Statistical Association,91, 862–872.

    Article  MATH  MathSciNet  Google Scholar 

  • Cuesta-Albertos, J.A., A. Gordaliza and C. Matrán (1997). Trimmedk-means: An attempt to robustify quantizers.The Annals of Statistics,25, 553–576.

    Article  MATH  MathSciNet  Google Scholar 

  • Cuesta-Albertos, J.A., A. Gordaliza and C. Matrán, C. (1998). Trimmed bestk-nets: A robustified version of aL -based clustering method.Statistics and Probability Letters,36, 401–413.

    Article  MATH  MathSciNet  Google Scholar 

  • Cuevas, A. and R. Fraiman (1997). A plug-in approach to support estimation.The Annals of Statistics,25, 2300–2312.

    Article  MATH  MathSciNet  Google Scholar 

  • Cuevas, A., M. Febrero, M. and R. Fraiman (1998). Cluster analysis: a further approach based on density estimation. Preprint.

  • Fraiman, R. and J. Meloche (1991). Counting bumps. Technical Report, 112, Department of Statistics, University of British Columbia.

  • García-Escudero, L.A., and A. Gordaliza (1999). Robustness properties ofk-means and trimmedk-means.Journal of the American Statistical Association (to appear).

  • García-Escudero, L.A., A. Gordaliza and C. Matrán (1999). A central limit theoem for multivariate generalized trimmedk-means.The Annals of Statistics,27, 1061–1079.

    Article  MATH  MathSciNet  Google Scholar 

  • Good, I.J. and R.A. Gaskins (1980). Density estimation and bump-hunting by the penalized maximum likelihood method exemplified by scattering and meteorite data (with discussion).Journal of the American Statistical Association,75, 42–73.

    Article  MATH  MathSciNet  Google Scholar 

  • Gordaliza, A. (1991). Best approximations to random variables based on trimming procedures.Journal of Approximation Theory,64, 162–180.

    Article  MATH  MathSciNet  Google Scholar 

  • Rousseeuw, P.J. (1986). Multivariate estimation with high breakdown point. InMathematical Statistics and Applications (W. Grossmann, G. Pflug, I. Vincze and W. Wertz eds.) Dordrecht: Reidel, 283–297.

    Google Scholar 

  • Small, C.G. (1990). A survey of multidimensional medians.International Statistical Review,58, 263–277.

    Google Scholar 

References

  • He, X. and Q.M. Shao (1996). A general Bahadur representation of M-estimators and its application to lincar regression with nonstochastic designs,Annals of Statistics,24, 2608–2630.

    Article  MATH  MathSciNet  Google Scholar 

  • He, X. and G. Wang (1997). Convergence of depth contours for multivariate datasets,Annals of Statistics,25, 495–504.

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, J. and D. Pollard (1990). Cube root asymptotics,Annals of Statistics,18, 191–219.

    MATH  MathSciNet  Google Scholar 

  • Liu, R.Y., J.M. Parclius, J.M. and K. Singh (1999). Multivariate analysis by data depth: descriptive statistics, graphics and inference,Annals of Statistics (in press).

  • Mizera, I. (1998). On depth and deep points: a calculus. Preprint.

  • Zuo, Y. and R. Serfling (1998). General notions of statistical depth function and some related convergence results. Preprint.

References

  • Davies, P.L. (1987). Asymptotic behavior of S-estimates of multivariate location parameters and dispersion matrices.Annals of Statistics,15, 1969–1292.

    Google Scholar 

  • Donoho, D. (1982). Breakdown properties of multivariate location estimators. Ph.D. qualifying paper, Harvard University.

  • Stahel, W. (1981). Breakdown of covariance estimates. Research report 31

References

  • Hettmansperger, T.P. and J.W. McKean (1998).Robust Nonparametric Statistical Methods. Arnold, London.

    MATH  Google Scholar 

  • Hettmansperger, T.P., J. Möttönen and H. Oja (1997). Affine-invariant multivariate one-sample signed-rank tests.Journal of the American Statistical Association,92, 1591–1600.

    Article  MATH  MathSciNet  Google Scholar 

  • Parzen, E. (1979). Nonparametric statistical data modeling.Journal of the American Statistical Association,74, 105–131.

    Article  MATH  MathSciNet  Google Scholar 

  • Sheather, S.J. and J.S. Marron (1990). Kernel quantile estimators.Journal of the American Statistical Association,85, 410–416.

    Article  MATH  MathSciNet  Google Scholar 

  • Yang, S.S. (1985). A smooth nonparametric estimator of the quantile function.Journal of the American Statistical Association,80, 1004–1011.

    Article  MATH  MathSciNet  Google Scholar 

References

  • Brown, B.M. (1983). Statistical uses of the spatial median.Journal of the Royal Statistical Society, B,45, 25–30.

    MATH  Google Scholar 

  • Liu, R.Y. and K. Singh (1992). Ordering directional data: concepts of data depth on circles and spheres.Annals of Statistics,20, 1468–1484.

    MATH  MathSciNet  Google Scholar 

  • Niimimaa, A., H. Oja and M. Tableman (1990). The finite sample breakdown point of the Oja bivariate median.Statistics and Probability Letters,10, 325–328.

    Article  MathSciNet  Google Scholar 

  • Small, C.G. (1987). Measures of centrality of multivariate and directional distributions.Canadian Journal of Statistics,15, 31–39.

    MATH  MathSciNet  Google Scholar 

  • Small, C.G. (1997). Multidimensional medians arising from geodesics on graphs.Annals of Statistics,25, 478–494.

    Article  MATH  MathSciNet  Google Scholar 

  • Tukey, J.W. (1975). Mathematics and the picturing of data. InProceedings of the International Congress of Mathematicians, Vancouver 1974,2, 523-531.

References

  • Bednarski, T. and B.R. Clarke (1993). Trimmed likelihood estimation of location and scale of the normal distribution.Australian Journal of Statistics,35, 141–153.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Fraiman.

Additional information

The research was partially supported by grant #37 from the CONICYT and by grant 5-81089 from NSERC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraiman, R., Meloche, J., García-Escudero, L.A. et al. Multivariate L-estimation. Test 8, 255–317 (1999). https://doi.org/10.1007/BF02595872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595872

Key Words

AMS subject classification

Navigation