Skip to main content
Log in

In vivo photometric analysis of hemoglobin

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Since virtually all the oxygen carried by blood at normal hematocrit is reversibly bound to red blood cell hemoglobin, the distribution of oxygen within the microcirculation can be determined from measurements of hemoglobin concentration and hemoglobin oxygen saturation in vessels of the network. Photometric methods that rely on light absorption and scattering properties of blood are described. Criteria for selecting the wavelengths needed to analyze hemoglobin in the microcirculation are specified. Two theoretical descriptions of light absorption and scattering, multiple scattering theory and photon diffusion theory, are applied to the problem. Practical approaches to the determination of hemoglobin concentration and oxygen saturation in the microcirculation follow from these theoretical formulations. Technical aspects of microscope photometry including light sources, microscopy, and detection systems are described with special emphasis on the problem of glare. The importance of in vitro as well as in vivo calibrations is stressed, and several recent applications of a working system are discussed. Current problems as well as future developments of this methodology are delineated as a guide to future work in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, N.M. and P. Sekelj. Light-absorbing and scattering properties of nonhaemolysed blood.Phys. Med. Biol. 12:173–184, 1967.

    Article  PubMed  CAS  Google Scholar 

  2. Baker, M. and H. Wayland. On-line volume flow rate and velocity profile measurement for blood in microvessels.Microvasc. Res. 7:131–143, 1974.

    Article  PubMed  CAS  Google Scholar 

  3. Barer, R. Spectrophotometry of clarified cell suspensions.Science 121:709–715, 1955.

    Article  PubMed  CAS  Google Scholar 

  4. Cohen, A. and R.L. Longini. Theoretical determination of the blood's relative oxygen saturationin vivo.Med. Biol. Eng. 9:61–69, 1971.

    Article  PubMed  CAS  Google Scholar 

  5. Duling, B.R. and R.M. Berne. Oxygen and the local regulation of blood flow: possible significance of longitudinal gradients in arterial blood oxygen tension.Cir. Res. 28 & 29 (Suppl. I), I-65–I-69, 1971.

    Google Scholar 

  6. Duling, B.R., D.N. Damon, S.R. Donaldson, and R.N. Pittman. A computerized system for densitometric analysis of the microcirculation.J. Appl. Physiol. 55:642–651, 1983.

    PubMed  CAS  Google Scholar 

  7. Duysens, L.N.M. The lattening of the absorption spectrum of suspensions, as compared to that of solutions.Biochem. Biophys. Acta 19:1–12, 1956.

    Article  PubMed  CAS  Google Scholar 

  8. Ellsworth, M.L. and R.N. Pittman. Intraluminal distribution of hematocrit and red blood cell velocity in the hamster retractor muscle.Microvasc. Res. 27:241, 1984 (abstract).

    Google Scholar 

  9. Ellsworth, M.L. and R.N. Pittman. Intraluminal gradients in microvascular oxyhemoglobin saturation in the hamster retractor muscle.Int. J. Microcirc: Clin Exp. 3:371, 1984 (abstract).

    Google Scholar 

  10. Janssen, F.J. A study of the absorption and scattering factors of light in whole blood.Med. Biol. Eng. 10:231–240, 1972.

    Article  PubMed  CAS  Google Scholar 

  11. Kanzow, G., A.R. Pries, and P. Gaehtgens. Analysis of the hematocrit distribution in the mesenteric microcirculation.Int. J. Microcirc. Clin. Exp. 1:67–79, 1982.

    PubMed  CAS  Google Scholar 

  12. Klose, H.J., E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schonbein. Microrheology and light transmission of blood: I. The photometric effects of red cell aggregation and red cell orientation.Pflugers Arch. 333:126–139, 1972.

    Article  PubMed  CAS  Google Scholar 

  13. Kubelka, P. New contributions to the optics of intensely light-scattering materials. Part I.J. Opt. Soc. Am. 38:448–457, 1948.

    PubMed  CAS  Google Scholar 

  14. Lipowsky, H.H., S. Usami, and S. Chien.In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat.Microvasc. Res. 19:297–319, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Lipowsky, H.H., S. Usami, S. Chien, and R.N. Pittman. Hematocrit determination in small bore tubes by differential spectrophotometry.Microvasc. Res. 24:42–55, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Loewinger, E., A. Gordon, A. Weinreb, and J. Gross. Analysis of a micromethod for transmission oximetry of whole blood.J. Appl. Physiol. 19:1179–1184, 1964.

    PubMed  CAS  Google Scholar 

  17. Pardue, H.L., T.E. Hewitt, and M.J. Milano. Photometric errors in equilibrium and kinetic analyses based on absorption spectroscopy.Clin. Chem. 20:1028–1042, 1974.

    PubMed  CAS  Google Scholar 

  18. Piller, H.Microscope Photometry. New York: Springer-Verlag, 1977.

    Google Scholar 

  19. Pittman, R.N. Relation between dual sensor centerline velocity and mean velocity in tubes of circular and elliptic cross section.Microvasc. Res. 27:266, 1984 (abstract).

    Google Scholar 

  20. Pittman, R.N. and B.R. Duling. A new method for the measurement of percent oxyhemoglobin.J. Appl. Physiol. 38:315–320, 1975.

    PubMed  CAS  Google Scholar 

  21. Pittman, R.N. and B.R. Duling. Measurement of percent oxyhemoglobin in the microvasculature.J. Appl. Physiol. 38:321–327, 1975.

    PubMed  CAS  Google Scholar 

  22. Pittman, R.N. and B.R. Duling. Effects of altered carbon dioxide tension on hemoglobin oxygenation in hamster cheek pouch.Microvasc. Res. 13:211–224, 1977.

    Article  PubMed  CAS  Google Scholar 

  23. Pries, A.R., G. Kanzow, and P. Gaehtgens. Microphotometric determination of hematocrit in small vessels.Am. J. Physiol. 245:H167-H177, 1983.

    PubMed  CAS  Google Scholar 

  24. Reynolds, L., C. Johnson, and A. Ishimaru. Diffuse reflectance from a limited blood medium: applications to the modeling of fiber optic catheters.Appl. Opt. 15:2059–2067, 1976.

    Google Scholar 

  25. Sarelius, I.H. and B.R. Duling. Direct measurement of microvessel hematocrit, red cell flux, velocity and transit time.Am. J. Physiol. 243:H1018-H1026, 1982.

    PubMed  CAS  Google Scholar 

  26. Swain, D.P. and R.N. Pittman. Oxygen mass balance in arterioles of hamster retractor muscle.Int. J. Microcirc. Clin. Exp. 3:379, 1984 (abstract).

    Google Scholar 

  27. Takatani, S. and M.D. Graham. Theoretical analysis of diffuse reflectance from a two-layer tissue model.IEEE Trans. Biomed. Eng. 26:656–664, 1979.

    Article  PubMed  CAS  Google Scholar 

  28. Twersky, V. Absorption and multiple scattering by biological suspensions.J. Opt. Soc. Am. 60:1084–1093, 1970.

    Article  PubMed  CAS  Google Scholar 

  29. Van Assendelft, O.W.Spectrophotometry of Haemoglobin Derivatives. Assen, The Netherlands: Charles C. Thomas, 1970.

    Google Scholar 

  30. Wodick, R. and D.W. Lubbers. A new method for determining the degree of oxygenation of hemoglobin spectra of inhomogeneous light paths, explained with the analysis of spectra of the human skin.Pflugers Arch. 342:41–60, 1973.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research of the author presented in this paper was supported in part by grants HL18292 and HL33172 from the National Heart, Lung and Blood Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pittman, R.N. In vivo photometric analysis of hemoglobin. Ann Biomed Eng 14, 119–137 (1986). https://doi.org/10.1007/BF02584263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584263

Keywords

Navigation