[1]

V. M. Badkov,

*Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval*, Math. USSR-Sb. 24 (1974), 223–256.

CrossRef [2]

G. Criscuolo, B. Della Vecchia, G. Mastroianni,*Hermite interpolation and mean convergence of its derivatives*, Calcolo 1, 2, 28 (1991), 111–127.

[3]

G. Criscuolo, B. Della Vecchia, G. Mastroianni
*Approximation by extended Hermite-Fejer and Hermite interpolation*, Colloq. Math. Soc. Janos Bolyai 58 (1991), 151–178.

[4]

G. Criscuolo, B. Della Vecchia, G. Mastroianni,*Hermite-Fejér and Hermite interpolation*, Proceedings of NATO-ASI Conference on Approximation Theory, Spline Functions and Applications, Maratea (ed. by S. P. Singh) (1991), 317–331.

[5]

G. Criscuolo, B. Della Vecchia, G. Mastroianni,

*Extended Hermite interpolation with additional nodes and mean convergence of its derivatives*, Rend. Mat. Appl., Serie VII, 12 (1992), 709–728.

MATH [5]

G. Criscuolo, B. Della Vecchia, G. Mastroianni,*Hermite interpolation on two new nodes matrices*, Proceedings of International Conference on Constructive Theory of functions (Varna, Bulgaria) (1992), 93–98.

[7]

G. Criscuolo, B. Della Vecchia, G. Mastroianni,*Extended Hermite interpolation on Jacobi zeros and mean convergence of its derivatives*, Facta Universitatis Nix (1992).

[8]

G. Criscuolo, B. Della Vecchia, G. Mastroianni,*Approximation by Hermite-Fejer and Hermite interpolation*, to appear in Jour. Approx. Theory and its Applications, (1993).

[9]

G. Criscuolo, G. Mastroianni,*Lagrange interpolation on generalized Jacobi zeros with additional nodes*, to appear on Acta Math. Hungar. (1993).

[10]

G. Criscuolo, G. Mastroianni,*Mean and Uniform Convergence of Quadrature Rules for Evaluating the Finite Hilbert Transform*, Progress in Approx. Th. (1991), 141–175.

[11]

G. Criscuolo, G. Mastroianni, P. Nevai,*Mean Convergence of derivatives of extended Lagrange interpolation with additional nodes*, Math. Nachr. 163 (1993).

[12]

B. Della Vecchia, G. Mastroianni, P. Vértesi,*Simultaneous approximation by Hermite interpolation of higher order*, to appear in J. Comp. Appl. Math. (1993).

[13]

B. Della Vecchia, G. Mastroianni, P. Vértesi,*Weighted L*
^{
p
}
*approximation by Hermite interpolation of higher order plus endpoints*, to appear in Studia Sci. Hungar. (1993).

[14]

V. K. Dzyadik,*Introduction to the theory of uniform approximation of functions by polynomials*, Nauka (Moskan, 1977) (in Russian).

[15]

I. E. Gopengauz,

*On a theorem of A.F. Timan on the approximation of functions by polynomials on a finite segment*, Math. Notes 1 (1967), 110–116 (in Russian).

MathSciNet [16]

P. Nevai,*Orthogonal Polynomials*, Mem. Amer. Math. Soc.,*213*, Providence, Rhode Island, 1979.

[17]

P. Nevai,

*Bernstein's inequality in L*
^{
p
},

*for 0<p<∞*, J. Approx. Theory 27 (1979), 239–243.

MATHCrossRefMathSciNet [18]

P. Nevai,

*Mean convergence of Lagrange interpolation III*, Trans. Amer. Math. Soc. 282 (1984), 669–698.

MATHCrossRefMathSciNet [19]

P. Nevai, Y. Xu,*Mean convergence of Hermite interpolation*, to appear in J. Approx. Theory (1993).

[20]

J. Szabados,*On the order of magnitude of fundamental polynomials of Hermite interpolation*, Acta Math. Hungar. 61 (1993).

[21]

G. Szego,*Orthogonal Polynomials*, Amer. Math. Soc. n. 23, (1939).

[22]

P. Vértesi,*Remarks on mean convergence of Hermite interpolation*, submitted (1992).

[23]

P. Vértesi, Y. Xu,

*Weighted L*
^{
p
}
*convergence of Hermite interpolation of higher order*, Acta Math. Hungar. 59 (3–4) (1992), 423–438.

CrossRefMathSciNet [24]

Y. Xu,*Norm of the Hermite interpolation operator*, Approx. Theory IV, Vol. II, (1989), (ed. by C. K. Chui, L. L. Schumaker, J. D. Ward), 683–686.

[25]

Y. Xu,*On mean convergence of interpolating polynomials*, Colloq. Math. Soc. Jamas Bolyai, 58 (1990), 749–761.