Skip to main content
Log in

Methanobacterium arbophilicum sp. nov. An obligate anaerobe isolated from wetwood of living trees

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The isolation and characterization of a new methanogenic bacterium,Methanobacterium arbophilicum, is described. Isolation from wetwood enrichment cultures, that were obtained from methane-positive trees, required a medium containing inorganic salts, vitamins, and an atmosphere consisting of an 80∶20 mixture of hydrogen-carbon dioxide. Isolates ofM. arbophilicum were gram-positive, non-motile short rods that occurred singly, in pairs, or chains. The organism was found to be an autotroph and a strict anaerobe, and to have a pH optimum of 7.5–8.0. The optimal temperature for growth was 30 to 37C, the maximum being 45C and the minimum about 10C. The organism had obligate growth requirements for H2 and CO2, and organic compounds greatly stimulated growth. The generation time in shake flask culture was about 17 hr in mineral salts medium and about 13 hr in complex medium. The DNA base composition was 27.5 mol % GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho, P. E., Seidler, R. J., Evans, H. T. andRaju, P. N. 1974. Distribution, enumeration and identification of nitrogen-fixing bacteria associated with decay in living white fir trees. —Phytopathology64: 1413–1420.

    Article  CAS  Google Scholar 

  • Bryant, M. P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. —Am. J. Clin. Nutr.25: 1324–1328.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. 1974. Methane-producing bacteria. Part B. 472–477.In R. E. Buchanan and N. E. Gibbons, (eds.), Bergey's Manual of Determinative Bacteriology, 8th Ed.—Williams and Wilkins Co., Baltimore.

    Google Scholar 

  • Bryant, M. P., Tzeng, S. F., Robinson, I. M. andJoyner, A. E., Jr. 1971. Nutrient requirements of methanogenic bacteria, p. 23–40.In F. G. Pohland, Anaerobic biological treatment processes.—Advances in Chemistry, Series, 105, American Chem. Soc., Washington, D.C.

    Google Scholar 

  • Carter, J. C. 1945. Wetwood of elms. Ill. Dat. Hist. Surv. Bull.23: 407–448.

    CAS  Google Scholar 

  • Daniels, L. andZeikus, J. G. 1975. Improved culture flask for obligate anaerobes.—Appl. Microbiol.29: 710–711.

    PubMed  CAS  Google Scholar 

  • De Ley, J. 1970. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid.—J. Bacteriol.101: 738–754.

    PubMed  Google Scholar 

  • Hartley, C. R., Davidson, W. andCrandall, B. S. 1961. Wetwood, bacteria and increased pH in trees.—U.S. Dept. Agric. For. Service, For. Prod. Lab., Rep. 2215.

  • Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes, p. 117.In J. R. Norris and D. W. Ribbons, (eds.), Methods in Microbiology, Vol. 3B.—Academic Press, New York.

    Google Scholar 

  • Knutson, P. M. 1973. The bacteria in sapwood, wetwood and heartwood of trembling aspen (Populus tremuloides).—Can. J. Bot.51: 498–500.

    Article  Google Scholar 

  • Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. —J. Mol. Biol.3: 208–218.

    Article  CAS  Google Scholar 

  • Nelson, D. R. andZeikus, J. G. 1974. Rapid method for the radioisotopic analysis of gaseous end products of anaerobic metabolism.—Appl. Microbiol.28: 258–261.

    PubMed  CAS  Google Scholar 

  • Schildkraut, C. L., Marmur, J. andDoty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl.—J. Mol. Biol.4 430–443.

    Article  PubMed  CAS  Google Scholar 

  • Stankewich, J. P., Cosenza, B. J. andShigo, A. L. 1971.Clostridium quercicolum sp. n., isolated from discolored tissues in living oak trees.—Antonie van Leeuwenhoek37: 299–302.

    Article  PubMed  CAS  Google Scholar 

  • Ward, J. C., Kuntz, J. E. andMcCoy, E. M. 1969. Bacteria associated with shake in broadleaf trees.—Phytopathology59: 1056.

    Google Scholar 

  • Wolin, E. A., Wolin, M. J. andWolfe, R. S. 1963. Formation of methane by bacterial extracts.—J. Biol. Chem.238: 2882–2886.

    PubMed  CAS  Google Scholar 

  • Zeikus, J. G. andBowen, V. G. 1975. Comparative ultrastructure of methanogenic bacteria. —Can. J. Microbiol21: 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Zeikus, J. G. andWard, J. C. 1974. Methane formation in living trees: a microbial origin.— Science184: 1181–1183.

    Article  CAS  PubMed  Google Scholar 

  • Zeikus, J. G., Weimer, P. J., Nelson, D. R. andDaniels, L. 1975. Bacterial methanogenesis: acetate as a methane precursor in pure culture.—Arch. Microbiol.104: 129–134.

    Article  CAS  Google Scholar 

  • Zeikus, J. G. andWolfe, R. S. 1972.Methanobacterium thermoautotrophicum sp. n., an anaerobic autotrophic, extreme thermophile.—J. Bacteriol.109: 707–713.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeikus, J.G., Henning, D.L. Methanobacterium arbophilicum sp. nov. An obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek 41, 543–552 (1975). https://doi.org/10.1007/BF02565096

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02565096

Keywords

Navigation