Skip to main content
Log in

Exponential families with variance functions in\(\sqrt {\Delta P} (\sqrt \Delta )\): Seshadri’s class: Seshadri’s class

  • Published:
Test Aims and scope Submit manuscript

Summary

This paper presents a classification of the setS 3 of all natural exponential families (NEF) on ℝ which have a variance function of the form\(\sqrt {\Delta P} (\sqrt \Delta )\), whereP is a polynomial of degree 3 and Δ is an affine function of the mean of the NEF. Particular cases have been considered previosly by V. Seshadri and can be obtained by a Lindsay transform of the NEF with cubic variance, as classified by Marianne Mora.S 3 may be split into six types and we provide a probabilistic interpretation of each of them; in particular, we show that the literature on random mappings provides several examples of discrete elements ofS 3. The final result gives the closure ofS 3 under the topology of weak convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bar-Lev, S. K. and Enis, P. (1987). Reproducibility and natural exponential families with power variance functions.Ann. Statist. 14, 1507–1522.

    MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O. E. (1978).Information and Exponential Families in Statistical Theory. Chichester: Ellis Horwood.

    MATH  Google Scholar 

  • Berg, S. and Nowicki, K. (1991). Statistical inference for a class of modified power series distributions with applications to random mapping theory.J. Statist. Planning and Inference 28, 247–261.

    Article  MathSciNet  Google Scholar 

  • Consul, P. C. (1989).Generalized Poisson Distributions: Properties and Applications. New York: Marcel Dekker.

    MATH  Google Scholar 

  • Dieudonné, J. (1971).Infinitesimal Calculus. Boston: Houghton Mifflin

    Google Scholar 

  • Dudley, R. M. (1989).Real Analysis and Probability. California: Wadsworth and Brooks Cole.

    MATH  Google Scholar 

  • Harris, T. E. (1963).The Theory of Branching Processes Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Janardan, K. G. and Rao, B. R. (1983). Lagrange distributions of the second kind and weighted distributions.J. Appl. Math. 43, 302–313.

    MathSciNet  Google Scholar 

  • Jørgensen, B. (1987). Exponential dispersion models.J. Roy. Statist. Soc. B 49, 127–162.

    Google Scholar 

  • Jørgensen, B., Martínez, J. R. and Tsao, M. (1994). Asymptotic behaviour of the variance function.Scandinavian J. Statist. 21, 223–243.

    Google Scholar 

  • Kokonendji, C. C. (1992). Caractérisation de fonctions variance de Seshadri des familles exponentielles sur.R. C. R. Acad. Sci. Paris, Série I. 314, 1063–1068.

    MathSciNet  Google Scholar 

  • Kokonendji, C. C. and Seshadri, V. (1992). La méthode de Lindsay appliquée à la construction de familles exponentielles de fonctions variance de degré 4 en\(\sqrt m \).C. R. Acad. Sci. Paris, Série I. 314, 305–308.

    MathSciNet  Google Scholar 

  • Kokonendji, C. C. and Seshadri V. (1994). The Lindsay transform of natural exponential families.Canadian J. Statist. 22, 259–272.

    MathSciNet  Google Scholar 

  • Letac, G. (1986). La réciprocité des familles exponentielles naturelles surℝ. C. R. Acad. Sci. Paris, Série I. 303, 61–64.

    MathSciNet  Google Scholar 

  • Letac, G. (1991). The classification of natural exponential families by their variance functions.Proceedings of the 48th session of the International Statistical Institute.54, #3.

  • Letac, G. (1992).Lectures on Natural Exponential Families and their Variance Functions. Rio de Janeiro: I.M.P.A.

    MATH  Google Scholar 

  • Letac, G. and Mora, M. (1986). Sur les fonctions-variance des familles exponentielles naturelles surℝ. C. R. Acad. Sci. Paris, Série I. 302, 551–554.

    MathSciNet  Google Scholar 

  • Letac, G. and Mora, M. (1990). Natural real exponential families with cubic variance functions.Ann. Statist. 18, 1–37.

    MathSciNet  Google Scholar 

  • Loève, M. (1963).Probability Theory. Toronto, New York, London: Van Norstrand.

    MATH  Google Scholar 

  • Mora, M. (1986). Classification des fonctions-variance cubiques des familles exponentielles surℝ. C. R. Acad. Sci. Paris, Série I. 302, 587–590.

    MathSciNet  Google Scholar 

  • Mora, M. (1990). La convergence des fonctions variance des familles exponentielles naturelles.Annales de la Faculté des Sci. de Toulouse, Série 5, XI fasc. 2, 105–120.

    MathSciNet  Google Scholar 

  • Morris, C. N. (1982). Natural exponential families with quadratic variance functions.Ann. Statist. 10, 65–80.

    MathSciNet  Google Scholar 

  • Rainville, E. D. (1960).Special Functions. New York: Chelsea.

    MATH  Google Scholar 

  • Seshadri, V. (1991). Finite mixtures of natural exponential families.Canadian J. Statist. 19, 437–445.

    MathSciNet  Google Scholar 

  • Wendel, J. G. (1975). Left continuous random walk and Lagrange expansion.Amer. Math. Monthly. 82, 494–499.

    Article  MathSciNet  Google Scholar 

  • Yanagimoto, T. (1989). The inverse binomial distribution as a statistical model.Comm. Statist. Theory and Methods 18, 3625–3633.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokonendji, C.C. Exponential families with variance functions in\(\sqrt {\Delta P} (\sqrt \Delta )\): Seshadri’s class: Seshadri’s class. Test 3, 123–172 (1994). https://doi.org/10.1007/BF02562698

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02562698

Keywords

Navigation