Skip to main content
Log in

The central limit theorem for empirical processes on V-Č classes: A majorizing measure approach

  • Published:
Test Aims and scope Submit manuscript

Summary

Alexander (1987) gave necessary and sufficient conditions for the central limit theorem for empirical processes on Vapnik-Červonenkis classes of functions. In this paper we present an alternative version of his result using Talagrand’s analytic characterization of pregaussianness (the majorizing measure condition). Our proof can be directly extended to give the corresponding result in the non-gaussian stable case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, K. S. (1987). The central limit theorem for empirical processes on Vapnik-Červonenkis classes of functions.Ann. Prob. 15, 178–203.

    MATH  Google Scholar 

  • Alexander, K. S. and Pyke, R. (1986). A uniform central limit theorem for set-indexed partial sum processes with finite variance.Ann. Prob. 14, 582–597.

    MathSciNet  MATH  Google Scholar 

  • Andersen, N. T. (1985). The calculus of non-measurable functions and sets.Tech. Rep. 36, Aarhus University.

  • Andersen, N. T., Giné, E., Ossiander, M. and Zinn, J. (1988). The central limit theorem and the law of iterated logarithm for empirical processes under local conditions.Probab. Theory Related Fields 77, 271–305.

    MathSciNet  MATH  Google Scholar 

  • Andersen, N. T., Giné, E. and Zinn, J. (1988). The central limit theorem for empirical processes under local conditions: the case of Radon infinitely divisible limits without Gaussian component.Trans. Amer. Math. Soc. 308, 603–635.

    Article  MathSciNet  MATH  Google Scholar 

  • Bass, R. F. (1985). Law of the iterated logarithm for set-indexed partial-sum processes with finite variance.Z. Wahrscheinlichkeitstheory verw. Geb. 70, 591–608.

    Article  MathSciNet  MATH  Google Scholar 

  • Bennett, G. W. (1962). Probability inequalities for sums of bounded random variables.J. Amer. Statist. Assoc. 57, 33–45.

    Article  MATH  Google Scholar 

  • Chang, L. C. (1964). On the ratio of the empirical distribution to the theoretical distribution function.Sel. Transl. Math. Statist. Prob. 4, 17–38.

    Google Scholar 

  • Dudley, R. M. (1967). The sizes of compact subsets of Hilbert spaces and continuity of Gaussian processes.J. Func. Anal. 1, 290–330.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R. M. (1973). Sample functions of the Gaussian process.Ann. Prob. 1, 66–103.

    MathSciNet  MATH  Google Scholar 

  • Dudley, R. M. (1984). A course on empirical processes.Lect. Notes in Math. 1097, 1–142. Berlin: Springer.

    Google Scholar 

  • Fernique, X. (1974). Regularité des trajectories des fonctions aléatoires gaussienes.Lect. Notes in Math. 480, 1–96, Berlin: Springer.

    Google Scholar 

  • Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes.Ann. Prob. 12, 929–989.

    MATH  Google Scholar 

  • Giné, E. and Zinn, J. (1986). Lectures on the central limit theorem for empirical processes.Lect. Notes in Math. 1221, 50–113.

    Article  Google Scholar 

  • Hoeffding, W. (1963). Probability inequalites for sums of bounded random variables.J. Amer. Statist. Assoc. 58, 13–30

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffmann-Jørgensen, J. (1984). Stochastic Processes on Polish Spaces.Tech. Rep., Aarhus University.

  • Kolmogorov, A. N. and Tikhomirov V. M. (1959). ∈-entropy and ∈-capacity of sets in function spaces.Ann. Math. Statist. 17 (1961), 277–364.

    Google Scholar 

  • Ossiander, M. (1987). A central limit theorem under metric entropy withL 2-bracketing.Ann. Prob. 15, 897–919.

    MathSciNet  MATH  Google Scholar 

  • Pollard, D. (1984).Convergence of Stochastic Processes, Berlin: Springer.

    MATH  Google Scholar 

  • Preston, C. (1972). Continuity properties of some Gaussian processes.Ann. Math. Statist. 43, 285–292.

    MathSciNet  MATH  Google Scholar 

  • Talagrand, M. (1987). Regularity of Gaussian processes.Acta Math. 159, 99–149.

    Article  MathSciNet  MATH  Google Scholar 

  • Vapnik, V. N. and Červonenkis, A. Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities.Theor. Prob. Applic. 16, 264–280.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romo, J. The central limit theorem for empirical processes on V-Č classes: A majorizing measure approach. Test 3, 47–72 (1994). https://doi.org/10.1007/BF02562693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02562693

Keywords

Navigation