Skip to main content
Log in

Estimation of a normal mixture model through Gibbs sampling and Prior Feedback

  • Published:
Test Aims and scope Submit manuscript

Summary

In this paper, we show how Gibbs sampling can provide a reliable approximation for Bayesian estimation of the parameters of a mixture distribution. Moreover, we deduce from the Bayesian approach an alternative derivation of maximum likelihood estimators in this setting, where standard nonin-formative approaches do not apply. Our method uses conjugate priors on each component of the mixture and is called Prior Feedback because the hyperparameters of these conjugate priors are iteratively replaced by the cor-responding posterior values until convergence is attained. We illustrate the appeal of this method through an astrophysical example, where the small sample size prohibits the use of standard maximum likelihood methods. A second example shows that Prior Feedback is also able to reject an unrealistic mixture model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barbanis, B. and Woltjer, I. (1967). Orbits in spiral galaxies and the velocity dispersion of Population I stars.Astrophys J. 150, 461–468.

    Article  Google Scholar 

  • Bernardo, J. and Girón, J. (1988). A Bayesian analysis of simple mixture problems.Bayesian Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.), Oxford: University Press, 67–78, (with discussion).

    Google Scholar 

  • Besag, J. and Green, P. (1993). Spatial statistics and Bayesian computation.J. Roy. Statist. Soc. B 55, 25–37.

    MathSciNet  MATH  Google Scholar 

  • Celeux, G. and Diebolt, J. (1986). L'algorithme SEM: un algorithme d'apprentissage probabiliste pour la reconnaissance de mélanges de densités.Revue Statist. Appl. 34, 35–52.

    MATH  Google Scholar 

  • Dempster, A., Laird, N. and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm.J. Roy. Statist. Soc. B 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential distributions.Ann. Statist. 7, 269–281.

    MathSciNet  MATH  Google Scholar 

  • Diebolt, J. and Robert, C.P. (1994). Estimation of finite mixture distributions through Bayesian sampling.J. Roy. Statist. Soc. B (to appear).

  • Gelfand, A. and Smith, A. (1990). Sampling-based approaches to calculating marginal densities.J. Amer. Statist. Assoc. 85, 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A. and Rubin, D. (1991). A single series from the Gibbs sampler provides a false sense of security.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds). Oxford: University Press, 625–631.

    Google Scholar 

  • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.IEEE Trans. Patt. Anal. Mach. Intel. 6, 721–740.

    Article  MATH  Google Scholar 

  • Geyer, C. (1991). Markov chain Monte Carlo maximum likelihood.Computer Sciences and Statistics: Proc. 23rd Symp. Interface (E. M. Keramidas, ed.. Fairfax Station: Interface Foundation, 156–163.

    Google Scholar 

  • Geyer, C. (1992). Practical Markov chain Monte Carlo.Statist. Sci. 7, 473–482.

    Google Scholar 

  • Gómez, A. E., Grenier, S., Jaschek, M. and Heck, A. (1981). The absolute magnitude of the Am stars.Astron. Astrophys 93, 155–159.

    Google Scholar 

  • Gómez, A. E., Delhaye, J., Grenier, S., Jaschek, C., Arenou, F. and Jaschek, M. (1990). Local kinematic properties of Population I (B5-F5)-type stars and galactic disk evolution.Astron. Astrophys 236, 95–98.

    Google Scholar 

  • Grenier, S., Jaschek, M., Gómez, A. E., Jaschek, C. and Heck, A. (1981). The absolute magnitude of the Ap stars.Astron. Astrophys 100, 24–27.

    Google Scholar 

  • van Laarhoven, P. (1988).Theoretical and Computational Aspects of Simulated Annealing. Amsterdam: CWI Tract 51.

    MATH  Google Scholar 

  • Lacey, C. G. (1984). The influence of massive gas clouds on stellar velocity dispersions in galactic disks.Monthly Not. Roy. Astron. Soc. 208, 687–707.

    Google Scholar 

  • Liu, J., Wong, W. H. and Kong, A. (1991). Correlation structure and convergence rate of the Gibbs sampler.Tech. Rep. 299, University of Chicago.

  • Mengersen, K. L. and Robert, C. P. (1993). Testing for mixture via entropy distance and Gibbs sampling.Tech. Rep. Université de Rouen.

  • Qian, W. and Titterington, D. M. (1991). Estimation of parameters in hidden Markov models.Phil. Trans. Royal Soc. London A 337, 407–428.

    MATH  Google Scholar 

  • Robert, C. P. (1992). Comments on Meng and Rubin's paper.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University Press, 321–323.

    Google Scholar 

  • Robert, C. P. (1993). Prior Feedback: a Bayesian tool for maximum likelihood estimation.J. Computational Statistics, (to appear).

  • Schervish, M. and Carlin, B. (1991). On the convergence of successive substitution sampling.J. Computational and Graphical Statistics 1, 111–128.

    Article  MathSciNet  Google Scholar 

  • Smith, A. and Roberts, G. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods.J. Roy. Statist. Soc. B 55, 3–23.

    MathSciNet  MATH  Google Scholar 

  • Spitzer, L. J. and Schwarzchild, M. (1953). The possible influence of interstellar clouds on stellar velocities.Astrophys. J. 118, 106–112.

    Article  Google Scholar 

  • Tanner, M. A. (1991).Tools for Statistical Inference. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Tanner, M. and Wong, W. (1987). The calculation of posterior distributions by data augmentation.J. Amer. Statist. Assoc. 82, 528–550.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney, L. (1991). Markov chains for exploring posterior distributions.Computer Sciences and Statistics: Proc. 23rd Symp. Interface (E. M. keramidas, ed.). Fairfax Station: Interface Foundation, 563–570.

    Google Scholar 

  • Titterington, D., Smith, A. and Makov, U. (1985).Statistical Analysis of Finite Mixture Distributions. New York: Wiley.

    MATH  Google Scholar 

  • West, J. (1992). Modelling with mixtures.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University Press, 503–524, (with discussion).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, C.P., Soubiran, C. Estimation of a normal mixture model through Gibbs sampling and Prior Feedback. Test 2, 125–146 (1993). https://doi.org/10.1007/BF02562672

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02562672

Keywords

Navigation