Skip to main content
Log in

Piezoelectricity and pyroelectricity as a basis for force and temeprature detection by nerve receptors

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A square pulse of increased temperature often produces in nerve systems two response transients of opposite sign at the start and end of the temperature pulse. This is characteristic of a pyroelectric process. It is seen in the fish thermoreceptor, which also shows proportionality between the time derivatives of response and temperature which is predicted from pyroelectric theory. The muscle stretch receptor shows linearity of neural response with the logarithm of applied mechanical force. This is predicted from the concept that the neural response is governed by a piezoelectric effect in an elastic polymer macromolecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bassett, C. A. L. and R. O. Becker. 1962. “Generation of Electric Potentials by Bone in Response to Mechanical Stress.”Science 137, 1063–1064.

    Article  Google Scholar 

  • Bazhenov, V. A. 1961.Piezoelectric Properties of Wood. New York: Plenum Press.

    Google Scholar 

  • Becker, R. O., C. A. Bassett and C. H. Bachman. 1964. “Bioelectric Factors Controlling Bone Structure.” InBone Biodynamics, H. Frost ed. New York: Little, Brown and Co.

    Google Scholar 

  • Bernhard, C. G. and R. Granit. 1946. “Nerve as a Model Temperature End Organ.”J. Gen. Physiol.,29, 257–265.

    Article  Google Scholar 

  • Boring, E. G. 1950.A History of Experimental Psychology. Second edition. New York: Appleton-Century-Crofts. Pages 284–295.

    Google Scholar 

  • Brailsford, F. 1966.Physical Principles of Magnetism. London: Van Nostrand.

    Google Scholar 

  • Burkhardt, D. 1959. “Die Erregungsvorgänge sensible Ganglienzelle in Abhängigkeit von der Temperatur.”Biol. Zentralblatt,78, 22–62.

    Google Scholar 

  • Cady, W. G. 1964.Piezoelectricity. Revised edition. New York: Dover Publications.

    Google Scholar 

  • Chynoweth, A. G. 1956a. “Dynamic Method for Measuring the Pyroelectric Effect with Special Reference to Barium Titanate.”J. Appl. Physics,27, 78–84.

    Article  Google Scholar 

  • —, 1956b. “Surface Space-Charge Layers in Barium Titanate.”Phys. Rev.,102, 705–714.

    Article  Google Scholar 

  • Cope, F. W. 1969. “Theory of the Effect of Externally Applied Voltage on Membrane Oxidation Kinetics.”Bull. Math. Biophysics,31, 519–527.

    Article  Google Scholar 

  • Cope, F. W. 1970. “The Solid State Physics of Electron and Ion Transport in Biology.”Adv. Biol. Med. Physics,13, 1–42.

    Google Scholar 

  • —, 1971a. “Temperature Dependence of the Elovich Equation Derived from Activated Electron or Ion Transport across a Biological Interface, with an Application to Muscle Spindle Adaptation.”Bull. Math. Biophysics,33, 39–47.

    Article  Google Scholar 

  • — 1971b. “The Solid State Physical Theory of Cytochrome Oxidase Kinetics. Inhibition of Second Order Rate Constant, and Second to First Order Kinetic Shift with Increasing Oxygen, Predicted from Electron Injection and Trapping” ——Ibid.,33, 579–588.

    Article  Google Scholar 

  • — 1971c. “Evidence from Activation Energies for Superconductive Tunneling in Biological Systems at Physiological Temperatures.”Physiol. and Chem. Physics,3, 403–410.

    Google Scholar 

  • — 1972. “Generalizations of the Roginsky-Zeldovich (or Elovich) Equation for Charge Transport across Biological Surfaces.”Bull. Math. Biophysics,34, 419–427.

    Article  Google Scholar 

  • — 1973. “Supramolecular Biology—Toward a Solid State Physical Theory.”Ann. N.Y. Acad. Sci.,204, 416–433.

    Article  Google Scholar 

  • — and K. D. Straub. 1969. “Calculation and Measurement of Semiconduction Activation Energy and Electron Mobility in Cytochrome Oxidase, with Evidence that Charge Carriers are Polarons, which may Couple Oxidation to Phosphorylation.”Bull. Math. Biophysics,31, 761–774.

    Article  Google Scholar 

  • Duchesne, J., J. Depireux, A. Bertinchamps, N. Cornet and J. M. van der Kaa. 1960. “Thermal and Electrical Properties of Nucleic Acids and Proteins.”Nature,188, 405–406.

    Article  Google Scholar 

  • Evans, S. M. 1948. “Tissue Responses to Physical Forces. I. The Pathogenesis of Silicosis. A Preliminary Report.”J. Indust. Hygiene and Tox.,30, 353–356.

    Google Scholar 

  • — and W. Zeit. 1949a. “Tissue Responses to Physical Forces. II. The Response of Connective Tissue to Piezoelectrically Active Crystals.”J. Lab. Clin. Med.,34, 592–609.

    Google Scholar 

  • — and —. 1949b. “Tissue Responses to Physical Forces. III. The Ability of Galvanic Current Flow to Stimulate Fibrogenesis.” ——Ibid.,34, 610–615.

    Google Scholar 

  • Frank, N. H. 1940.Introduction to Electricity and Optics. New York: McGraw-Hill Book Co.

    MATH  Google Scholar 

  • Fukada, E. 1955. “Piezoelectricity of Wood.”J. Phys. Soc. Japan,10, 149–154.

    Article  Google Scholar 

  • — 1968a. “Piezoelectricity in Polymers and Biological Materials.”Ultrasonics,6, 229–234.

    Article  Google Scholar 

  • — 1968b. “Mechanical Deformation and Electrical Polarization in Biological Substances.”Biorheology,5, 199–208.

    Google Scholar 

  • Hensel, H. 1955. “Quantitative Beziehungen zwischen Temperaturreiz und Actionpotentialen der Lorenzinischen Ampullen.”Zeitscher. vergl. Physiol.,37, 509–529.

    Article  Google Scholar 

  • — and Y. Zotterman. 1951. “Quantitative Beziehungen zwischen der Entladung einzelner Kältefasern und der Temperature.”Acta Physiol. Scand.,23, 291–319.

    Article  Google Scholar 

  • James, H. M. and E. Guth. 1943. “Theory of the Elastic Properties of Rubber.”J. Chem. Physics,11, 455–481.

    Article  Google Scholar 

  • Johnson, F. H., Eyring, H. and M. J. Polissar. 1954.The Kinetic Basis of Molecular Biology. New York: John Wiley & Sons.

    Google Scholar 

  • Kerkut, G. A. and B. J. R. Taylor. “Effect of Temperature on the Spontaneous Activity from the Isolated Ganglia of the Slug, Cockroach and Crayfish.”Nature,178, 426.

  • — and —. 1958. “The Effect of Temperature Changes on the Activity of Poikilotherms.”Behavior,13, 259–279.

    Google Scholar 

  • — and R. M. A. P. Ridge. 1962. “The Effect of Temperature Changes on the Activity of the Neurones of the Snail Helix Aspersa.”Comp. Biochem. Physiol.,5, 283–295.

    Article  Google Scholar 

  • King, A. 1946. “Law of Elasticity for an Ideal Elastomer.”Amer. J. Physics,14, 28–30.

    Article  Google Scholar 

  • — and R. W. Lawton. 1950. “Elasticity of Body Tissues.” inMedical Physics, Volume 2, O. Glasser ed. Chicago: Year Book Publishers. Pages 303–316.

    Google Scholar 

  • Mathews, B. H. C. 1931. “The Response of a Single End Organ.”J. Physiol.,71, 64–110.

    Google Scholar 

  • Sand, A. 1938. “The Function of the Ampullae of Lorenzini, with Some Observations on the Effect of Temperature on Sensory Rhythms.”Proc. Roy. Soc. (London),B125, 524–553.

    Google Scholar 

  • Shamos, M. H., L. S. Lavine and M. I. Shamos. 1963. “Piezoelectric Effect in Bone.”Nature,197, 81.

    Article  Google Scholar 

  • Stevens, S. S. and H. Davis. 1938.Hearing, Its Psychology and Physiology. New York: John Wiley & Sons.

    Google Scholar 

  • von Hippel, A. 1959.Molecular Science and Molecular Engineering. New York: John Wiley & Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cope, F.W. Piezoelectricity and pyroelectricity as a basis for force and temeprature detection by nerve receptors. Bltn Mathcal Biology 35, 31–41 (1973). https://doi.org/10.1007/BF02558791

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02558791

Keywords

Navigation