Skip to main content
Log in

Decoherence in continuous measurements: From models to phenomenology

  • Part II. Invited Papers Dedicated to Mikio Namiki
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Decoherence is the name for the complex of phenomena leading to appearance of classical features of quantum systems. In the present paper decoherence in continuous measurements is analyzed with the help of restricted path integrals (RPI) and (equivalently in simple cases) complex Hamiltonians. A continuous measurement results in a readout giving information in the classical form on the evolution of the measured quantum system. The quantum features of the system reveal themselves in the variation of possible measurement readouts. For example, the monitoring energy of a multi-level system may visualize a transition between levels as a process evolving in time but with an unavoidable quantum noise. Decoherence of a continuously measured system is completely determined by the measurement readout, i.e., by the information recorded in its environment. It is shown that the ideology of RPI makes the Feynman version of quantum mechanics closed, contrary to the conventional operator form of quantum mechanics which needs quantum theory of measurement as a necessary additional part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Machida and M. Namiki,Prog. Theor. Phys. 63, 1457, 1833 (1980).

    Article  ADS  Google Scholar 

  2. S. Machida and M. Namiki,Proceedings, International Symposium on Foundations of Quantum Mechanics, S. Kamefuchiet al., eds. (Physical Society of Japan, Tokyo, 1984), pp. 127, 136.

    Google Scholar 

  3. W. H. Zurek,Phys. Rev. D,24, 1516 (1981);26 1862 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Joos and H. D. Zeh,Z. Phys. B,59, 223 (1985).

    Article  ADS  Google Scholar 

  5. M. Gell-Mann and J. Hartle,Phys. Rev. D 47, 3345 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. D. Zeh,Decoherence and the Appearance of a Classical World in Quantum Theory, (Springer, Berlin, 1996).

    MATH  Google Scholar 

  7. M. B. Mensky, Restricted path integrals for open quantum systems, inQuantum Physics, Chaos Theory, and Cosmology, M. Namiki, I. Ohba, K. Maeda, and Y. Aizawa, eds. (American Institute of Physics, New York, 1996), pp. 257–273.

    Google Scholar 

  8. J. Audretsch and M. B. Mensky,Phys. Rev. A 56, 44 (1997).

    Article  ADS  Google Scholar 

  9. C. Presilla, R. Onofrio, and U. Tambini,Ann. Phys. (N.Y.) 248, 95–121 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. B. Mensky,Continuous Quantum Measurements and Path Integrals (IOP, Bristol, 1993).

    Google Scholar 

  11. Johann V. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932); English translation:Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).

    MATH  Google Scholar 

  12. G. C. Ghirardi, A. Rimini, and T. Weber,Phys. Rev. D 34, 470 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  13. B. Misra and E. C. G. Sudarshan,J. Math. Phys. 18, 756 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  14. C. B. Chiu, E. C. G. Sudarshan, and B. Misra,Phys. Rev. D 16, 520 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Peres,Am. J. Phys. 48, 931 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  16. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland,Phys. Rev. A 41, 2295 (1990).

    Article  ADS  Google Scholar 

  17. F. Ya. Khalili,Vestn. Mosk. Univ., Ser. 3, No. 5, 13 (1988).

    Google Scholar 

  18. H. D. Zeh,Found. Phys. 1, 69 (1970).

    Article  ADS  Google Scholar 

  19. H. D. Zeh,Found. Phys. 3, 109 (1973).

    Article  ADS  Google Scholar 

  20. V. B. Braginsky and Yu. I. Vorontsov,Usp. Fiz. Nauk 114, 41 (1974).

    Google Scholar 

  21. V. B. Braginsky and F. Ya. Khalili,Quantum Measurement (Cambridge University Press, Cambridge, 1992).

    MATH  Google Scholar 

  22. A. O. Caldeira and A. J. Leggett,Physica A 121, 587–616 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. D. F. Walls and G. J. Milburn,Phys. Rev. A 31, 2403 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  24. D. F. Walls, M. J. Collett, and G. J. Milburn,Phys. Rev. D 32, 3208 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  25. Carlton M. Caves and G. J. Milburn,Phys. Rev. A 36, 5543–5555 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Peres, Continuous monitoring of quantum systems, inInformation Complexity and Control in Quantum Physics, A. Blaquiere, S. Diner, and G. Lochak, eds. (Springer, Wien, 1987), pp. 235–240.

    Google Scholar 

  27. A. Konetchnyi, M. B. Mensky, and V. Namiot,Phys. Lett. A 177, 283 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. B. Mensky,Phys. Lett. A 231, 1 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Lindblad,Commun. Math. Phys.,48, 119 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. B. Mensky,Phys. Rev. D 20, 384 (1979).

    Article  ADS  Google Scholar 

  31. M. B. Mensky,Sov. Phys.—JETP 50, 667 (1979).

    ADS  Google Scholar 

  32. L. Arnold,Stochastic Differential Equations (Wiley, New York, 1974).

    MATH  Google Scholar 

  33. N. Gisin,Helv. Phys. Acta 62, 363–371 (1989).

    MathSciNet  Google Scholar 

  34. L. Diosi,Phys. Rev. A 40, 1165 (1989).

    Article  ADS  Google Scholar 

  35. L. Diosi,Phys. Lett. B 280, 71–74 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  36. V. P. Belavkin,Phys. Lett. A 140, 355–358 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  37. Howard Carmichael,An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993).

    MATH  Google Scholar 

  38. R. P. Feynman and F. L. Vernon,Ann. Phys. 24, 118 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  39. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  40. R. B. Griffiths,J. Stat. Phys. 36, 219 (1984).

    Article  MATH  ADS  Google Scholar 

  41. R. Omnès,Ann. Phys. (N.Y.) 201, 354 (1990).

    Article  ADS  Google Scholar 

  42. M. Gell-Mann and J. Hartle, inProceedings, 3d International Symposium in the Foundations of Quantum Mechanics in the Light of New Technology, S. Kobayashi, H. Ezawa, Y. Murayama, and S. Nomura, eds. (Physical Society of Japan, Tokyo, 1990).

    Google Scholar 

  43. R. P. Feynman,Rev. Mod. Phys.,20, 367 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  44. F. Ya. Khalili,Vestn. Mosk. Univ., Ser. 3, Phys. Astr. 22, 37 (1981).

    Google Scholar 

  45. A. Barchielli, L. Lanz, and G. M. Prosperi,Nuovo Cim. B 72, 79 (1982).

    MathSciNet  ADS  Google Scholar 

  46. C. M. Caves,Phys. Rev. D 33, 1643 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  47. G. A. Golubtsova and M. B. Mensky,Int. J. Mod. Phys. A 4, 2733 (1989).

    Article  ADS  Google Scholar 

  48. M. B. Mensky, R. Onofrio, and C. Presilla,Phys. Lett. A 161, 236 (1991).

    Article  ADS  Google Scholar 

  49. T. Calarco,Nuovo Cimento B 110, 1451 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  50. M. B. Mensky, “Restricted path integrals for open quantum systems”, inQuantum Physics. Chaos Theory, and Cosmology, M. Namiki, I. Ohba, K. Maeda, and Y. Aizawa, eds. (American Institute of Physics, New York, 1996), pp. 257–273.

    Google Scholar 

  51. R. Onofrio, C. Presilla, and U. Tambini,Phys. Lett. A 183, 135 (1993).

    Article  ADS  Google Scholar 

  52. U. Tambini, C. Presilla, and R. Onofrio,Phys. Rev. A 51, 967 (1995).

    Article  ADS  Google Scholar 

  53. J. Audretsch, M. Mensky, and V. Namiot, “Visualization of a quantum transition”, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mensky, M.B. Decoherence in continuous measurements: From models to phenomenology. Found Phys 27, 1637–1654 (1997). https://doi.org/10.1007/BF02551442

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551442

Keywords

Navigation