Skip to main content
Log in

Catastrophe theory and cellular determination, transdetermination and differentiation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Catastrophe theory can be used to illustrate the results of some of the events that occur during embryogenesis. Trajectories over the surface of catastrophe manifolds provide an extension of Waddington's concept of a description of embryogenesis based on chreodic paths on an epigenetic landscape. The development of Elementary Catastrophe Theory to describe time- and spece-equivalent events provides a rich qualitative “language” that seems well suited for the description of cellular behavior. Space-equivalent catastrophes have been used to illustrate the processes of cellular determination, differentiation, and transdetermination with initial success. This use should be tested further, for example, by experimental manipulation of embryonic tissue at well defined intervals of time during its development. The relationship of this approach to some others and to possible future theoretical developments has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  • Bennett, D., E. A. Boyse, and L. J. Old. 1972. “Cell Surface Immunogenetics in the Study of Morphogenesis.” InCell Interactions. Third Lepetit Colloquium pp. 247–263.

  • Cooke, J. 1975. “The Emergence and Regulation of Spatial Organization in Early Animal Development.”Appendix, Zeeman, E. C.: Catastrophe Theory and Biological Patterns.Ann. Rev. Biophys. Bioengng,4, 185–217.

    Article  Google Scholar 

  • Child, C. M. 1941.Patterns and Problems of Development. Chicago, Ill.: University of Chicago Press.

    Google Scholar 

  • Deuchar, E. M. 1973. “Biochemical Aspects of Early Differentiation in Vertebrates.”Adv. Morph.,10, 175–225.

    Google Scholar 

  • Flawiá, M. and H. N. Torres. 1973. “Adenylate Cyclase Activity inNeurospora crassa. III. Modulation by Glucagon and Insulin.”J. Biol. Chem.,248, 4517–4520.

    Google Scholar 

  • Furshpan, E. G. and D. D. Potter. 1968. “Low Resistance Junctions between Cells in Embryos and Tissue Culture.”Curr. Topics Dev. Biol.,3, 95–127.

    Google Scholar 

  • Gardner, R. and M. Lyon. 1971. “X Chromosome Inactivation Studied by Injection of a single Cell into the Mouse Blastocyst.”Nature,231, 385–386.

    Article  Google Scholar 

  • Gehring, W., G. Mindek and E. Hadam. 1968. “Auto- und Allotypische Differenzierungen aus Blastemen der Halterenscheibe vonDrosophila melanogaster nach Kulturin vivo.”J. Embryol. Exp. Morph.,20, 307–318.

    Google Scholar 

  • Godwin, A. N. 1971. “Three dimensional pictures for Thom's parabolic umbilic.”Inst. Hautes Études Sci. Publ. Math.,40, 117–138.

    MathSciNet  MATH  Google Scholar 

  • Goodwin, B. C. and M. H. cohen. 1969. “A phase shift model for the spatial and temporal organization of developing systems.”J. Theor. Biol.,25, 49–107.

    Article  Google Scholar 

  • Gurdon, J. B. 1974.The Control of Gene Expression in Animal Development. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Hadorn, E. 1966. “Konstanz, Wechsel und Typus der Determination und Differenzierung in Zellen aus Männlichen Genitalan Lagen vonDrosophila melanogaster nach Dauerkulturin vivo.”Dev. Biol.,13, 424–509.

    Article  Google Scholar 

  • Harris, H. 1974.Nucleus and Cytoplasm. 3rd ed. Oxford: Oxford University Press.

    Google Scholar 

  • Holmes, P. J. and D. A. Rand. 1976. “The Bifurcations of Duffing's Equation: an Application of Catastrophe Theory.”J. Sound Vibration,44 (2), 237–253.

    Article  MATH  Google Scholar 

  • Huxley, T. E. and G. deBeer. 1934.The Elements of Experimental Embryology. New York: Macmillan.

    Google Scholar 

  • Illiano, G., G. P. E. Tell, M. I. Siegel, and P. Cuatrecasas. 1973. “Guanosine 3′: 5′-Cyclic Monophosphate and the Action of Insulin and Acetylcholine.”Proc. Natn. Acad. Sci. U.S.A.,70, 2443–2447.

    Article  Google Scholar 

  • Insel, P. A., H. R. Bourne, P. Coffino, and G. M. Tomkins. 1975. “Cyclic AMP-Dependent Protein Kinase: Pivotal Role in Regulation of Enzyme Induction and Growth.”Science,190, 896–898.

    Article  Google Scholar 

  • Kauffman, S. 1975. “Control Circuits for Determination and Transdetermination: Interpreting Positional Information in a Binary Epigenetic Code.” In:Cell Patterning. CIBA Foundation Symposium29 (new series). Amsterdam, Holland: Associated Scientific Publishers.

    Google Scholar 

  • Kram, R., P. Mamont and G. M. Tomkins. 1973. “Pleiotypic Control by Adenosine 3′:5′-Cyclic Monophosphate: A Model for Growth Control in Animal Cells.”Proc. Natn. Acad. Sci. U.S.A.,70, 1432–1436.

    Article  Google Scholar 

  • Kram, R. and G. M. Tomkins. 1973. “Pleiotypic Control by Cyclic AMP: Interaction with Cyclic GMP and Possible Role of Microtubules.”Proc. Natn. Acad. Sci. U.S.A.,70, 1659–1663.

    Article  Google Scholar 

  • Lawrence, P. A., F. H. C. Crick and M. Munro. 1972. “A Gradient of Positional Information in an Insect,Rhodnius.”J. Cell Sci.,11, 815–53.

    Google Scholar 

  • Lewin, R., 1973. New role for insulin.New Scientist, 690–692.

  • Needham, J. 1968.Order and Life. Cambridge, Mass: M.I.T. Press.

    Google Scholar 

  • Sheridan, J. D. 1966. “Electrophysiological Study of Special Connections between Cells in the Early Chick Embryo.”J. Cell. Biol.,31 c1-c5.

    Article  Google Scholar 

  • Sheridan J. D. 1973. “Functional Evaluation of Low Resistance Junctions: Influence of Cell Shape and Size.”Am. Zool.,13, 1119–1128.

    Google Scholar 

  • Tarkowski, A. and J. Wroblewska 1967. “Development of Blastomeres of Mouse Eggs Isolated at the 4- and 8-cell stage.”J. Embryol. Exp. Morph.,18, 155–180.

    Google Scholar 

  • Thom, R. 1969. “Topological Models in Biology.”Topology,8, 313–335.

    Article  MathSciNet  MATH  Google Scholar 

  • Thom, R. 1975.Structural Stability and Morphogenesis. Reading, Mass.: Benjamin.

    MATH  Google Scholar 

  • Thompson, D'Arcy W. 1942.On Growth and Form. Cambridge, England: Cambridge University Press; New York: Macmillan.

    MATH  Google Scholar 

  • Trelstad, R. L., E. D. Hay and J. P. Revel. 1967. “Cell Contact During Early Morphogenesis in the Chick Embryo.”Dev. Biol.,16, 78–106.

    Article  Google Scholar 

  • Waddington, C. H. 1940.Organizers and Genes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Waddington, C. H. 1970. “Concepts and Theories of Growth, Development, Differentiation and Morphogenesis.” In.Toward a Theoretical Biology: 3 Drafts (Waddington, C. H., Ed.) Chicago, Ill.: Aldine-Publishing Co.

    Google Scholar 

  • Waddington, C. H. 1972.Towards a Theoretical Biology: 3 Essays (Waddington, C. H., Ed.) Chicago, Ill.: Aldine-Atherton Publishing Co.

    Google Scholar 

  • Waddington, C. H. 1975.The Evolution of an Evolutionist. Ithaca, New York: Cornell University Press.

    Google Scholar 

  • Wassermann, G. 1975. “Stability of Unfoldings in Space and Time.”Acta Math. 135, 57–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolpert, L. 1968. “The French-Flag Problem.” In,Towards a Theoretical Biology, I. Prolegomena. (Waddington, C. H. Ed.). pp. 125–133.Edinburgh University Press.

  • Wolpert, L. 1969. “Positional Information and the Spatial Pattern, of Cellular Differentiation.”J. Theor. Biol.,25, 1–47.

    Article  Google Scholar 

  • Wolpert, L. 1971. “Positional Information and Pattern Formation.”Curr. Top. Dev. Biol.,6, 183–224.

    Article  Google Scholar 

  • Wolpert, L. 1975. “The Development of Pattern: Mechanisms Based on Positional Information.”Adv. Chem. Phys.,29, 253–267.

    MathSciNet  Google Scholar 

  • Woodcock, A. E. R. 1978. “Cellular Differentiation and Catastrophe Theory.”Ann. N.Y. Acad. Sci.,231, 60–76.

    Article  Google Scholar 

  • Woodcock, A. E. R. 1978. “On the Geometry of Space- and Time-Equivalent Unfoldings.” Bull. Math. Biol.,40, 1–25.

    MathSciNet  Google Scholar 

  • Woodcock, A. E. R. and T. Poston. 1974.A Geometrical Study Of the Elementary Catastrophes.Lectures in Mathematics 373. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Zeeman, E. C. 1974. “Primary and Secondary Waves in Developmental Biology: InLectures on Mathematics in the Life Sciences,7, 69–161.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodcock, A.E.R. Catastrophe theory and cellular determination, transdetermination and differentiation. Bltn Mathcal Biology 41, 101–117 (1979). https://doi.org/10.1007/BF02547928

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02547928

Keywords

Navigation