Skip to main content
Log in

Heat transfer in deformation calorimeters

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

A simple one-dimensional, axisymmetric model of a gas-pressure deformation calorimeter containing a lumped heat source accounts for observed pressure changes in terms of conductive and radiant components of heat transfer. Agreement is generally good between experimental data and the predicted calorimeter response for the range of source dimensions, heating rates, and test temperatures investigated in the study.

Zusammenfassung

Ein einfaches eindimensionales axensymmetrisches Modell eines Gasdruck-Deformationskalorimeters erklärt die beobachteten Druckänderungen in Abhängigkeit der leitenden und strahlenden Komponenten des Wärmetransportes. Für die vorliegend untersuchten Bereiche von Strahlungsquellenabmessungen, Aufheizgeschwindigkeiten und Testtemperaturen wird im allgemeinen eine gute Übereinstimmung zwischen experimentellen Daten und vorausgesagter Kalorimeterwirkung beobachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ai :

Surface area of the heat source

Ao :

Surface area of the calorimeter cell wall

β:

Dimensionless ratio of radiant to conduction terms

C:

Heat capacity of heat source

εi, εo :

Emissivity of source and cell wall, respectively

G(x):

Derived geometric quantity relating gas pressure change to source and cell parameters

G(0):

Value of G(x) at x=0, i.e. line source

kg :

Thermal conductivity of gas in calorimeter

ks :

Thermal conductivity of heat source in the calorimeter

lo, l:

Sample length in the undeformed and deformed state, respectively

L:

Calorimeter cell length= 0.287 m

γ:

Principle stretch ratio of sample in loading direction, γ=l/lo

Po :

Atmospheric pressure=1 bar=100 KPa

δP(t):

Instantaneous gas pressure change in calorimeter resulting from heat flow

ρ:

Temperature difference between the source and calorimeter cell wall

\(\dot Q_i^o \) :

Total heat flow from source (constant)

\(\dot Q_i \) :

Total heat flow from source (variable)

\(\dot Q_c \) :

Heat flow from source due to conduction

\(\dot Q_r \) :

Radiant heat flow from source

ri :

Source radius

ro :

Calorimeter cell radius=11.1 mm

∂:

Density of heat source

σ:

Stefan-Boltzmann radiation constant

Ti :

Heat source temperature

To :

Calorimeter cell wall temperature

τ:

Time constant of source

Vi :

Volume of source

Ω:

Electrical resistance of heating wires

x:

Dimensionless ratio of source to cell radii

ζ:

Time variable of integration

References

  1. R. E. Lyon and R. J. Farris, Rev. Sci. Inst., 57 (1986) 1640.

    Article  CAS  Google Scholar 

  2. R. E. Lyon, Thermodynamics of Deformation, Ph. D. Thesis, University of Massachusetts, Amherst, MA, 1985.

    Google Scholar 

  3. R. E. Lyon and R. J. Farris, Polym. Eng. Sci., 24 (1984) 908.

    Article  CAS  Google Scholar 

  4. J. P. Holman, Heat Transfer, McGraw-Hill 1963, Chapter 8.

  5. R. E. Lyon and R. J. Farris, Thermochim. Acta, 161 (1990) 287.

    Article  CAS  Google Scholar 

  6. D. R. Pitts and L. E. Sissom, Theory and Problems of Heat Transfer, McGraw-Hill Book Company, NY 1977, Appendix B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyon, R.E., Raboin, P.J. Heat transfer in deformation calorimeters. Journal of Thermal Analysis 44, 777–793 (1995). https://doi.org/10.1007/BF02547264

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02547264

Keywords

Navigation