Skip to main content
Log in

Forecasting non-stationary time series by wavelet process modelling

  • Time Series
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Many time series in the applied sciences display a time-varying second order structure. In this article, we address the problem of how to forecast these nonstationary time series by means of non-decimated wavelets. Using the class of Locally Stationary Wavelet processes, we introduce a new predictor based on wavelets and derive the prediction equations as a generalisation of the Yule-Walker equations. We propose an automatic computational procedure for choosing the parameters of the forecasting algorithm. Finally, we apply the prediction algorithm to a meteorological time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antoniadis, A. and Sapatinas, T. (2003). Wavelet methods for continuous-time prediction using representations of autoregressive processes in Hilbert spaces,J. Multivariate Anal. (to appear).

  • Berkner, K. and Wells, R. (2002). Smoothness estimates for soft-threshold denoising via translation-invariant wavelet transforms,Appl. Comput. Harmon. Anal.,12, 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  • Brockwell, P. J. and Davis, R. A. (1991).Time Series: Theory and Methods, 2nd ed., Springer, New York.

    Google Scholar 

  • Calvet, L. and Fisher, A. (2001). Forecasting multifractal volatility,J. Econometrics,105, 27–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Coifman, R. and Donoho, D. (1995). Time-invariant de-noising,Wavelets and Statistics, Vol. 103 (eds. A. Antoniadis and G. Oppenheim), 125–150, Springer, New York.

    Google Scholar 

  • Dahlhaus, R. (1996a). Asymptotic statistical inference for nonstationary processes with evolutionary spectra,Athens Conference on Applied Probability and Time Series Analysis, Vol. 2, (eds. P. Robinson and M. Rosenblatt), Springer, New York.

    Google Scholar 

  • Dahlhaus, R. (1996b). On the Kullback-Leibler information divergence of locally stationary processes,Stochastic Process. Appl.,62, 139–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Dahlhaus, R. (1997). Fitting time series models to nonstationary processes,Ann. Statist.,25, 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Dahlhaus, R., Neumann, M. H. and von Sachs, R. (1999). Non-linear wavelet estimation of time-varying autoregressive processes,Bernoulli,5, 873–906.

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I. (1992).Ten Lectures on Wavelets, SIAM, Philadelphia.

    MATH  Google Scholar 

  • Fryźlewicz, P. (2002). Modelling and forecasting financial log-returns as locally stationary wavelet processes, Research Report, Department of Mathematics, University of Bristol. (http://www.stats. bris.ac.uk/pub/ResRept/2002.html)

  • Grillenzoni, C. (2000). Time-varying parameters prediction,Ann. Inst. Statist. Math.,52, 108–122.

    Article  MathSciNet  MATH  Google Scholar 

  • Kress, R. (1991).Numerical Analysis, Springer, New York.

    Google Scholar 

  • Ledolter, J. (1980). Recursive estimation and adaptive forecasting in ARIMA models with time varying coefficients,Applied Time Series Analysis, II (Tulsa, Okla.), 449–471, Academic Press, New York-London.

    Google Scholar 

  • Mallat, S., Papanicolaou, G. and Zhang, Z. (1998). Adaptive covariance estimation of locally stationary processes,Ann. Statist.,26, 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Mélard, G. and Herteleer-De Schutter, A. (1989). Contributions to the evolutionary spectral theory.J. Time Ser. Anal.,10, 41–63.

    MathSciNet  MATH  Google Scholar 

  • Nason, G. P. and von Sachs, R. (1999). Wavelets in time series analysis,Philos. Trans. Roy. Soc. London Ser. A,357, 2511–2526.

    Article  MATH  Google Scholar 

  • Nason, G. P., von Sachs, R. and Kroisandt, G. (2000). Wavelet processes and adaptive estimation of evolutionary wavelet spectra,J. Roy. Statist. Soc. Ser. B,62, 271–292.

    Article  Google Scholar 

  • Ombao, H., Raz, J., von Sachs, R. and Malow, B. (2001). Automatic statistical analysis of bivariate nonstationary time series,J. Amer. Statist. Assoc.,96, 543–560.

    Article  MathSciNet  MATH  Google Scholar 

  • Ombao, H., Raz, J., von Sachs, R. and Guo, W. (2002). The SLEX model of a non-stationary random process,Ann. Inst. Statist. Math.,54, 171–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Philander, S. (1990).El Niño, La Niña and the Southern Oscillation, Academic Press, San Diego.

    Google Scholar 

  • Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes,J. Roy. Statist. Soc. Ser. B,27, 204–237.

    MathSciNet  MATH  Google Scholar 

  • Van Bellegem, S. and von Sachs, R. (2003). Forecasting economic time series with unconditional time-varying variance,International Journal of Forecasting (to appear).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial supports from the contract ‘Projet d'Actions de Recherche Concertées’ no. 98/03-217 of the Belgian Government and from the IAP research network No. P5/24 of the Belgian State (Federal Office for Scientific, Technical and Cultural Affairs) are gratefully acknowledged.

About this article

Cite this article

Fryzlewicz, P., Van Bellegem, S. & von Sachs, R. Forecasting non-stationary time series by wavelet process modelling. Ann Inst Stat Math 55, 737–764 (2003). https://doi.org/10.1007/BF02523391

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523391

Key words and phrases

Navigation