Skip to main content
Log in

Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications

  • Cellular Engineering: Bioengineering of the Skin
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The field of tissue engineering has opened several avenues in biomedical sciences, through ongoing progress. Skin substitutes are currently optimised for clinical as well as fundamental applications. The paper reviews the development of collagen-populated hydrated gels for their eventual use as a therapeutic option for the treatment of burn patients or chronic wounds: tools for pharmacological and toxicological studies, and cutaneous models for in vitro studies. These skin substitutes are produced by culturing keratinocytes on a matured dermal equivalent composed of fibroblasts included in a collagen gel. New biotechnological approaches have been developed to prevent contraction (anchoring devices) and promote epithelial cell differentiation. The impact of dermo-epidermal interactions on the differentiation and organisation of bio-engineered skin tissues has been demonstrated with human skin cells. Human skin substitutes have been adapted for percutaneous absorption studies and toxicity assessment. The evolution of these human skin substitutes has been monitored in vivo in preclinical studies showing promising results. These substitutes could also serve as in vitro models for better understanding of the immunological response and healing mechanism in human skin. Thus, such human skin substitutes present various advantages and are leading to the development of other bio-engineered tissues, such as blood vessels, ligaments and bronchi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agren, M. S., Taplin, C. J., Woessner, F., Eaglstein, W. H. Jr., andMertz, P. M. (1992) ‘Collagenase in wound healing: Effect of wound age and type’,J. Invest. Dermatol.,99, pp. 709–714

    Google Scholar 

  • Allgöwer, M., Schoenenberger, G. A., andSparkes, B. (1995): ‘Burning the largest immune organ’,Burns,21, pp. S7-S47

    Google Scholar 

  • Asselineau, D., Bernard, B. A., Bailly, C., andDarmon, M. (1989): ‘Retinoic acid improves epidermal morphogenesis’,Develop. Biology,133, pp. 322–335

    Google Scholar 

  • Asselineau, D., Cavey, M.-T., Shroot, B., andDarmon, M. (1992): ‘Control of epidermal differentiation by a retinoid analogue unable to bind to cytosolic retinoic acid-binding proteins (CRABP)’,J. Invest. Dermatol.,98, pp. 128–134

    Google Scholar 

  • Auger, F. A. (1988): ‘The role of cultured autologous human epithelium in large burn wound treatment’,Transplantation/Implantation Today,5, pp. 21–26

    Google Scholar 

  • Auger, F. A., López Valle, C. A., Guignard, R., Tremblay, N., Noél, B., Goulet, F., andGermain, L. (1995): ‘Skin equivalents produced using human collagens’,In Vitro Cell. Dev. Biol.,31, pp. 432–439

    Google Scholar 

  • Azzam, H. S., andThompson, E. W. (1992): ‘Collagen-induced activation of the Mr 72,000 Type IV collagenase in normal and malignant fibroblastoid cells’,Cancer Res.,52, pp. 4540–4544

    Google Scholar 

  • Bailly, C., Drèza, S., Asselineau, D., Nusgens, B., Lapière, C. M., andDarmon, M. (1990): ‘Retinoic acid inhibits the production of collagenase by human epidermal keratinocytes’,J. Invest. Dermatol.,94, pp. 47–51

    Google Scholar 

  • Barker, C. F., andBillingham, R. E. (1972): ‘Immunologically competent passenger cells in mouse skin’,Transplantation,14, pp. 525–527

    Google Scholar 

  • Barra, R. M., Fenjves, E. S., andTaichman, L. B. (1994): ‘Secretion of apolipoprotein E by basal cells in culture of epidermal keratinocytes’,J. Invest. Dermatol.,102, pp. 61–66

    Google Scholar 

  • Barrandon, Y., andGreen, H. (1985): ‘Cell size as a determinant of the clone-forming ability of human keratinocytes’,Proc. Natl. Acad. Sci. (USA),82, pp. 5390–5394

    Google Scholar 

  • Bartek, M. J., LaBudde, J. A., andMaibach, H. I. (1972): ‘Skin permeabilityin vivo: comparison in rat, rabbit, pig and man’,J. Invest. Dermatol.,58, pp. 114–123

    Google Scholar 

  • Baschong, W., Sütterlin, R., andAebi, U. (1997): ‘Punchwounded, fibroblast populated collagen matrices: a novel approach for studying cytoskeletal changes in three dimensions by confocal laser scanning microscopy’,Eur. J. Cell Biol.,72, pp. 189–201

    Google Scholar 

  • Bauer, E. A., andUitto, J. (1979): ‘Collagen and cutaneous diseases’,Int. J. Dermatol.,18, pp. 251–270

    Google Scholar 

  • Bell, E., Ivarsson, B., Merrill, C. (1979): ‘Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro’,Proc. Natl. Acad. Sci. USA,76, pp. 1274–1278

    Google Scholar 

  • Bell, E., Ehrlich, H. P., Buttle, D. J., andNakatsuji, T. (1981a): ‘Living tissue formedin vitro and accepted as skin-equivalent tissue of full thickness’,Science,211, pp. 1042–1054

    Google Scholar 

  • Bell, E., Ehrlich, H. P., Sher, S., Merrill, C., Sarber, R., Hull, B., Nakatsuji, T., Church, B., andButtle, D. (1981b): ‘Development and use of a living skin equivalent’,Plast. Reconstr. Surg.,67, pp. 386–392

    Google Scholar 

  • Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coulomb, B., Lapière, C., Nusgens, B., andNeveux, Y. (1983): ‘The reconstitution of living skin’,J. Invest. Dermatol.,81, pp. 2s-10s

    Google Scholar 

  • Bell, E., Parenteau, N., Gay, R., Nolte, C., Kemp, P., Ekstein, B., andJohnson, E. (1991): ‘The living skin equivalent: its manufacture, its organotypic properties and its responses to irritants’,Toxic. in vitro,5, pp. 591–596

    Google Scholar 

  • Berthod, F., andAuger, F. A. (1997): ‘In vitro applications of skin substitutes for dermatological purposes’,in Roubhia, M. (Ed.): ‘Skin substitute production by tissue engineering: clinical and fundamental applications’ (Landes Bioscience, Austin). pp. 211–237

    Google Scholar 

  • Berthod, F., andDamour, O. (1997): ‘In vitro reconstructed skin models for wound coverage in deep burns’,Br. J. Dermatol.,136, pp. 809–816

    Google Scholar 

  • Berthod, F., Germain, L., Guignard, R., Lethias, C., Garrone, R., Damour, O., van der Rest, M., andAuger, F. A. (1997): ‘Differential expression of collagens XII and XIV in human skin and in reconstructed skin’,J. Invest. Dermatol.,108, pp. 737–742

    Google Scholar 

  • Bibo, P. R., Nolte, C. M., Tighe, C., andParenteau, N. L. (1993): ‘A highly differentiated organotypic skin model for dermatologic, pharmacologic and toxicologic research’,J. Toxicol.-Cut. Ocul. Toxicol.,12, pp. 183–196

    Google Scholar 

  • Bligh, E. G., andDyer, W. J. (1959): ‘A rapid method of total lipid extraction and purification’,Can. J. Biochem. Physiol.,37, pp. 911–917

    Google Scholar 

  • Bos, J. D., andKapsenberg, M. L. (1986): ‘The skin immune system. Its cellular constituents and their interactions’,Immunol. Today,7, pp. 235–240

    Google Scholar 

  • Bos, J. D., andKapsenberg, M. L. (1993): ‘The skin immune system; progress in cutaneous biology’,Immunol. Today,14, pp. 75–78

    Google Scholar 

  • Bouvard, V., Germain, L., Rompré, P., Roy, B., andAuger, F. A. (1992): ‘Influence of dermal equivalent maturation on a skin equivalent development’,Biochem. Cell Biol.,70, pp. 34–42

    Google Scholar 

  • Boyce, S. T., Glafkides, M. C., Foreman, T. J., andHansbrough, J. F. (1988): ‘Reduced wound contraction after grafting of full-thickness wounds with a collagen and chondroitin-6-sulfate (GAG) dermal skin substitute and coverage with Biobrane’,J. Burn Care Rehabil.,9, pp. 364–370

    Google Scholar 

  • Boyce, S. T., Medrano, E. E., Abdel-Malek, Z. A., Supp, A. P., Dodick, J. M., Nordlynd, J. J., andWarden, G. D. (1993): ‘Pigmentation and inhibition of wound contraction by cultured skin substitutes with adult melanocytes after transplantation to athymic mice’,J. Invest. Dermatol.,100, pp. 360–365

    Google Scholar 

  • Boyce, S. T. (1994): ‘Epidermis as a secretory tissue’,J. Invest. Dermatol.,102, pp. 8–10

    Google Scholar 

  • Boyce, S. T., Supp, A. P., Harringer, M. D., Greenhalgh, D. G., andWarden, G. D. (1995): ‘Topical nutrients promote engraftment and inhibit wound contraction of cultured skin substitutes in athymic mice’,J. Invest. Dermatol.,104, pp. 345–349

    Google Scholar 

  • Boyce, S. T., Foreman, T. J., English, K. B., Stayner, N., Cooper, M. L., Sakabu, S., andHansbrough, J. F. (1991): ‘Skin wound closure in athymic mice with cultured human cells, biopolymers, and growth factors’,Surgery,110, pp. 866–876

    Google Scholar 

  • Chin, Y. H., Falanga, V., Streilein, J. W., andSackstein, R. (1988): ‘Specific lymphocyte-endothelial cell interactions regulate migration into lymph nodes, Peyer's patches and skin’,Regional Immunol.,1, pp. 78–85

    Google Scholar 

  • Choi, Y., andFuchs, E. (1990): ‘TGF-β and retinoic acid: regulators of growth and modifiers of differentiation in human epidermal cells’,Cell Regulation,1, pp. 791–809

    Google Scholar 

  • Contard, P., Bartel, R. L., Jacobs II, L., Perlish, J. S., MacDonald, II, E. D., Handler, L., Cone, D., andFleischmajer, R. (1993): ‘Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal-lamina-anchoring zone’,J. Invest. Dermatol.,100, pp. 35–39

    Google Scholar 

  • Coulomb, B., Dubertret, L., Merrill, C., Touraine, R., andBell, E. (1984): ‘The collagen lattice: a model for studying the physiology, biosynthetic function and pharmacology of the skin’,Br. J. Dermatol.,111, pp. 83–87

    Google Scholar 

  • Coulomb, B., Lebreton, C., andDubertret, L. (1989): ‘Influence of human dermal fibroblasts on epidermalization’,J. Invest. Dermatol.,92, pp. 122–125

    Google Scholar 

  • Damour, O., Braye, F., Foyatier, J. L., Fabreguette, A., Rousselle, P., Vissac, S., andPetit, P. (1997): ‘Cultured autologous epidermis for massive burn wounds: 15 years of practice’,in Rouabhia, M. (Ed.): ‘Skin substitute production by tissue engineering: clinical and fundamental applications’ (Landes Bioscience, Austin). pp. 23–45

    Google Scholar 

  • De Luca, M., Bondanza, S., Cancedda, R., Tamisani, A. M., Di Noto, C., Muller, L., Dioguardi, D., Brienza, E., Calvario, A., Zermani, R., Di Mascio, D., andPapadia, F. (1992): ‘Permanent coverage of full skin thickness burns with autologous cultured epidermis and reepithelialization of partial skin thickness lesions induced by allogeneic cultured epidermis: a multicentre study in the treatment of children’,Burns,18S, pp. S16-S18

    Google Scholar 

  • Donati, L., Magliacani, G., Bormioli, M., Signorini, M., andBaruffaldi Preis, F. W. (1992): ‘Clinical experiences with keratinocyte grafts’,Burns,18S, pp. S19-S26

    Google Scholar 

  • Dubertret, L. (1990): ‘Reconstruction of the human skin equivalentin vitro: A new tool for skin biology’,Skin Pharmacol.,3, pp. 144–148

    Google Scholar 

  • Duncan, M. R., andBerman, B. (1991): ‘Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human Interleukin 6’,J. Invest. Dermatol.,97, pp. 686–692

    Google Scholar 

  • Eaglstein, W. H., Iriondo, M., andLaszlo, K. (1995): ‘A composite substitute (Graftskin®) for surgical wounds: a clinical experience’,Dermatol. Surg.,10, pp. 839–843

    Google Scholar 

  • Eaglstein, W. H., andFalanga, V. (1997): ‘Tissue engineering and the development of Apligraf, a human skin equivalent’,Clin. Ther.,19, pp. 894–905

    Google Scholar 

  • Eckes, B., Krieg, T., Nusgens, B. V., andLapière, C. M. (1995): ‘In vitro reconstituted skin as a tool for biology, pharmacology and therapy; a review’,Wound Rep. Reg.,3, pp. 248–257

    Google Scholar 

  • Ehrlich, H. P. (1988): ‘The modulation of contraction of fibroblast populated collagen lattices by types I, II, and III colagen’,Tissue & Cell.,20, pp. 47–50

    Google Scholar 

  • Ehrlich, H. P., andRajaratnam, J. B. M. (1990): ‘Cell locomotion forces versus cell contraction forces for collagen lattice contraction: anin vitro model of wound contraction’,Tissue Cell,22, pp. 407–417

    Google Scholar 

  • Finesmith, T. H., Broadley, K. N., andDavidson, J. M. (1990): ‘Fibroblasts from wounds of different stages of repair vary in their ability to contract a collagen gel in response to growth factors’,J. Cell Physiol.,144, pp. 99–107

    Google Scholar 

  • Franz, T. J. (1975): ‘Percutaneous absorption. On the relevance ofin vitro data’,J. Invest. Dermatol.,19, pp. 99–104

    Google Scholar 

  • Fuchs, E. (1990): ‘Epidermal differentiation: the bare essentials’,J. Cell Biol.,111, pp. 2807–2814

    Google Scholar 

  • Gabriani, G., Ryan, G. B., andMajno, G. (1971): ‘Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction’,Experientia,27, pp. 549–550

    Google Scholar 

  • Gallico, G. G., O'Connor, N. E., Compton, C. C., Kehinde, O., andGreen, H. (1984): ‘Permanent coverage of large burn wounds with autologous cultured human epithelium’,N. Engl. J. Med.,331, pp. 448–451

    Google Scholar 

  • Garrel, D. R., Gaudreau, P., Zhang, L., Reeves, I., andBrazeau, P. (1991): ‘Chronic administration of growth hormone-releasing factor increases wound strength and collagen maturation in granulation tissue’,J. Surg. Res.,51, pp. 297–302

    Google Scholar 

  • Gay, R., Swiderek, M., Nelson, D., andErnesti, A. (1992): ‘The living skin equivalent as a modelin vitro for ranking the toxic potential of dermal irritants’,Toxic. in vitro,6, pp. 303–315

    Google Scholar 

  • Geesin, J. C., Brown, L. J., Gordon, J. S., andBerg, R. A. (1993): ‘Regulation of collagen synthesis in human dermal fibroblasts in contracted gels by ascorbic acid, growth factors, and inhibitors of lipids peroxidation’,Exp. Cell Res.,206, pp. 283–290

    Google Scholar 

  • Genever, P. G., Wood, E. J., andCunliffe, W. J. (1993): ‘The wounded dermal equivalent offers a simplified model for studying wound repairin vitro’,Exp. Dermatol.,2, pp. 266–273

    Google Scholar 

  • Germain, L., Rouabhia, M., Guignard, R., Carrier, L., Bouvard, V., andAuger, F. A. (1993): ‘Improvement of human keratinocyte isolation and culture using thermolysin’,Burns,19, pp. 99–104

    Google Scholar 

  • Germain, L., Jean, A., Auger, F. A., andGarrel, D. R. (1994): ‘Human wound healing fibroblasts have greater contractile properties than dermal fibroblasts’,J. Surg. Res.,57, pp. 268–273

    Google Scholar 

  • Germain, L., andAuger, F. A. (1995): ‘Tissue engineered biomaterials: biological and mechanical characteristics’,in Wise, D. L., Trantolo, D. J., Altobelli, D. E., Yaszemski, M. J., Gresser, J. D., andSchwartz, E. R. (Eds.): ‘Encyclopedic handbook of biomaterials and bioengineering Part B: Applications’ (Marcel Dekker Inc. New York),1, pp. 699–734

    Google Scholar 

  • Germain, L., Guignard, R., Rouabhia, M., andAuger, F. A. (1995): ‘Early basement membrane formation following the grafting of cultured epidermal sheets detached with thermolysin or Dispase’,Burns,21, pp. 175–180

    Google Scholar 

  • Goulet, F., Poitras, A., Rouabhia, M., Cusson, D., Germain, L., andAuger, F. A. (1996): ‘Stimulation of human keratinocyte proliferation through growth factor exchanges with dermal fibroblastsin vitro’,Burns,22, pp. 107–112

    Google Scholar 

  • Goulet, F., Germain, L., Caron, C., Rancourt, D., Normand, A., andAuger, F. A. (1997a): ‘Tissue-engineered ligament’,in Yahia, L. H. (Ed.): ‘Ligaments and ligamentoplasties’ (Springer-Verlag, Berlin, Heidelberg) pp. 367–377

    Google Scholar 

  • Goulet, F., Germain, L., Rancourt, D., Caron, C., Normand, A., andAuger, F. A. (1997b): ‘Tendons and ligaments’,in Lanza, R., Langer, R., andChick, W. L. (Eds.): ‘Textbook of tissue engineering’ (Landes R G Co. & Academic Press Ltd., Austin, Texas), pp. 633–644

    Google Scholar 

  • Grant, M. E., andProckop, D. J. (1972): ‘The biosynthesis of collagen’,N. Engl. J. Med.,286, pp. 194–199

    Google Scholar 

  • Green, H., Kehinde, O., andThomas, J. (1979): ‘Growth of cultured human epidermal cells into multiple epithelia suitable for grafting’,Proc. Natl. Acad. Sci. USA,76, pp. 5665–5668

    Google Scholar 

  • Green, H., andBarrandon, Y. (1988): ‘Cultured epidermal cells and their use in the generation of epidermis’,NIPS,3, pp. 54–56

    Google Scholar 

  • Grinnell, F., andLamke, C. R. (1984): ‘Reorganization of hydrated collagen lattices by human skin fibroblasts’,J. Cell. Sci.,66, pp. 51–63

    Google Scholar 

  • Guidry, C., andGrinnell, F. (1985): ‘Studies on the mechanisms of hydrated collagen gel reorganization by human skin fibroblasts’,J. Cell Sci.,79, pp. 67–81

    Google Scholar 

  • Guidry, C., andGrinnell, F. (1986): ‘Contraction of hydrated collagen gels by fibroblasts: Evidence for two mechanisms by which collagen fibrils are stabilized’,Collagen Rel. Res.,6, pp. 515–529

    Google Scholar 

  • Guidry, C., andGrinnell, F. (1987): ‘Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts’,J. Cell Biol.,104, pp. 1097–1103

    Google Scholar 

  • Gullberg, D., Tingström, A., Thuresson, A., Olsson, L., andTerracio, L. (1990): ‘β1 integrin-mediated collagen gel contraction is stimulated by PDGF’,Exp. Cell Res.,186, pp. 264–272

    Google Scholar 

  • Hansbrough, J. F., Morgan, J. L., Greenleaf, G., Parikh, M., Nolte, C. J., andWilkins, L. (1994): ‘Evaluation of Graftskin composite grafts on full-thickness wounds on athymic mice’,J. Burn. Care Rehabil.,15, pp. 346–53

    Google Scholar 

  • Hefton, J. M., Amberson, J. B., Biozes, D. G., andWeksler, M. E. (1984): ‘Loss of HLA-DR expression by human epidermal cells after growth in culture’,J. Invest. Dermatol.,83, pp. 48–50

    Google Scholar 

  • Heussen, C., andDowdle, E. B. (1980): ‘electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates’,Anal. Biochem.,102, pp. 196–202

    Google Scholar 

  • Jahoda, C. A. B., andReynolds, A. J. (1993): ‘Dermal-epidermal interactions-Follicle-derived cell populations in the study of hair-growth mechanisms’,J. Invest. Dermatol.,101, pp. 33s-38s

    Google Scholar 

  • Jalkanen, S., Steere, A. D., Fox, R. I., andButcher, E. D. 91986): ‘A distinct endothelial cell recognition system that controls lymphocyte traffic into inflamed synovium’,Science,233, pp. 556

    Google Scholar 

  • Karelina, T. V., Hruza, G. J., Goldberg, G. I., andEisen, A. Z. (1993): ‘Localization of 92-kDa Type IV collagenase in human skin tumors: Comparison with normal human fetal and adult skin’,J. Invest. Dermatol.,100, pp. 159–165

    Google Scholar 

  • Katz, A. B., andTaichman, L. B. (1994): ‘Epidermis as a secretory tissue: Anin vitro tissue model to study keratinocyte secretion’,J. Invest. Dermatol.,102, pp. 55–60

    Google Scholar 

  • Kratz, G., Haegerstrand, A., andDalsgaard, C.-J. (1991): ‘Conditioned medium from cultured human keratinocytes has growth stimulatory properties on different human cell types’,J. Invest. Dermatol.,97, pp. 1039–1043

    Google Scholar 

  • L'Heureux, N., Germain, L., Labbé, R., andAuger, F. A. (1993): ‘In vitro construction of a human blood vessel from cultured vascular cells’,J. Vasc. Surg.,17, pp. 499–509

    Google Scholar 

  • L'Heureux, N., Páquet, S., Labbé, R., Germain, L., andAuger, F. A. (1998): ‘A completely biological tissue-engineered human blood vessel’,FASEB J.,12, pp. 47–56

    Google Scholar 

  • Laemmli, U. K. (1970): ‘Cleavage of structural proteins during the assembly of the head of bacteriophage T4’,Nature,227, pp. 680–685

    Google Scholar 

  • Lafrance, H., Guillot, M., Germain, L., andAuger, F. A. (1995a): ‘Method for the evaluation of tensile properties of skin equivalents’,Med. Eng. Phys.,17, pp. 537–543

    Google Scholar 

  • Lafrance, H., Yahia, L'H., Germain, L., Guillot, M., andAuger, F. A. (1995b): ‘Study of the tensile properties of living skin equivalents’,Biomed. Mat. Eng.,5, pp. 195–208

    Google Scholar 

  • Lambert, C. A., Soudant, E. P., Nusgens, B. V., andLapière, C. M. (1992): ‘Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces’,Lab. Invest.,66, pp. 444–451

    Google Scholar 

  • Laska, D. A., Poulsen, R. G., Horn, J. W., Meador, V. P., andHoover, D. M. (1992): ‘An evaluation of TESTSKIN®: an alternative dermal irritation model’,In Vitro Toxic,5, pp. 177–189

    Google Scholar 

  • Lin, Y.-C., andGrinnell, F. (1993): ‘Decreased level of PDGF-stimulated receptor autophosphorylation by fibroblasts in mechanically relaxed collagen matrices’,J. Cell Biol.,122, pp. 663–672

    Google Scholar 

  • López Valle, C. A., Auger, F. A., Rompré, P., Bouvard, V., andGermain, L. (1992a): ‘Peripheral anchorage of dermal equivalents’,Br. J. Dermatol.,127, pp. 365–371

    Google Scholar 

  • López Valle, C. A., Glaude, P., andAuger, F. A. (1992b): ‘Tieover dressings: surgical model forin vivo evaluation of cultured epidermal sheets in mice’,Plast. Reconstr. Surg.,89, pp. 139–144

    Google Scholar 

  • López Valle, C. A., Germain, L., andAuger, F. A. (1992c): ‘Modele chirurgical murin pour l'étude des greffons cultivés’,Annales de chirurgie,46, pp. 845–850

    Google Scholar 

  • López Valle, C. A., Germain, L., Rouabhia, M., Xu, W., Guignard, R., Goulet, F., andAuger, F. A. (1996): ‘Grafting on nude mice of living skin equivalents produced using human collagens’,Transplantation,62, pp. 317–323

    Google Scholar 

  • Mackenzie, I. C., andFusenig, N. E. (1983): ‘Regeneration of organized epithelial structure’,J. Invest. Dermatol.,81, pp. 189s-194s

    Google Scholar 

  • Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G. B., andStatkov, P. R. (1971): ‘Contraction of granulation tissuein vitro: similarity to smooth muscle’,Science,173, pp. 548–550

    Google Scholar 

  • Marchese, C., Rubin, J., Ron, D., Faggioni, A., Torrisi, M. R., Messina, A., Frati, L., andAaronson, S. A. (1990): ‘Human keratinocyte growth factor activity on proliferation and differenciation of human keratinocytes: Differenciation response distinguishes KGF from EGF family’,J. Cell. Physiol.,144, pp. 326–332

    Google Scholar 

  • Matsue, H., Cruz, P. D., Bergstresser, P. R., andTakashima, A. (1992): ‘Cytokine expression by epidermal cell subpopulations’,J. Invest. Dermatol.,99, pp. 42S-45S

    Google Scholar 

  • Maurer, D., andStingl, G. (1995): ‘Immunoglobulin E-binding structures on antigen-presenting cells present in skin and blood’,J. Invest. Dermatol.,104, pp. 707–710

    Google Scholar 

  • Medalie, D. A., Eming, S. A., Colins, M. E., Tomkins, R. G., Yarmush, M. L., andMorgan, J. R. (1997): ‘Differences in dermal analogs influence subsequent pigmentation, epidermal differentiation, basement membrane, and rete ridge formation of transplanted composite skin grafts’,Transplantation,64, pp. 454–469

    Google Scholar 

  • Michel, M., Auger, F. A., andGermain, L. (1993): ‘Anchored skin equivalent culturedin vitro: A new tool for percutaneous absorption studies’,In vitro Cell Dev. Biol.,29A, pp. 834–837

    Google Scholar 

  • Michel, M., Germain, L., Bélanger, P. M., andAuger, F. A. (1995): ‘Funotional evaluation of anchored skin equivalent cultured in vitro: percutaneous absorption studies and lipid analysis’,Pharm. Res.,12, pp. 455–458

    Google Scholar 

  • Michel, M., Török, N., Godbout, M.-J., Lussier, M., Gaudreau, P., Royal, A., andGermain, L. (1996): ‘Keratin 19 as a biochemical marker of skin stem cellsin vivo andin vitro. Keratin 19 expressing cells are differentially localized in function of anatomic sites and their number varies with donor age and culture stage’,J. Cell Sci.,109, pp. 1017–1028

    Google Scholar 

  • Michel, M., L'Heureux, N., Germain, L., andAuger, F. A. (1997): ‘From newborn to adult: ;phenotypic and functional properties of skin equivalent and human skin as a function of donor age’,J. Cell Physiol.,17, pp. 179–189

    Google Scholar 

  • Moll, R., Franke, W. W., andSchiller, D. L. (1982): ‘The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells’,Cell,31, pp. 11–24

    Google Scholar 

  • Moulin, V., Castilloux, G., Jean, A., Garrel, D. R., Auger, F. A., andGermain, L. (1996): ‘In vitro models to study wound healing fibroblasts’,Burns,22, pp. 359–362

    Google Scholar 

  • Moulin, V., Auger, F. A., O'Connor-McCourt, M., andGermain, L. (1997): ‘Fetal and postnatal sera differentially modulate human dermal fibroblast phenotypic and functional featuresin vitro’,J. Cell Physiol.,171, pp. 1–10

    Google Scholar 

  • Moulin, V., Castilloux, G., Auger, F. A., Garrel, D., O'Connor-McCourt, M., andGermain, L. (1998): ‘Comparison of human wound healing myofibroblasts with dermal fibroblastsin vitro’,Exp. Cell Res.,238, pp. 283–293

    Google Scholar 

  • Muhart, M., McFalls, S., Kirsner, R., Kerdel, F., andEaglstein, W. H. (1997): ‘Bioengineered skin’,Lancet,350, pp. 1142

    Google Scholar 

  • Nickoloff, B. J., andTurka, L. A. (1994): ‘Immunological functions of non-professional antigen-presenting cells: new insights from studies of T-cell interactions with keratinocytes’,Immunol. Today,15, pp. 464–469

    Google Scholar 

  • Nolte, C. J. M., Oleson, M. A., Hansbrough, J. F., Morgan, J., Greenleaf, G., andWilkins, L. (1994): ‘Ultrastructural features of composite skin cultures grafted onto athymic mice’,J. Anat.,185, pp. 325–33

    Google Scholar 

  • Nusgens, B., Merrill, C., Lapiere, C., andBell, E. (1984): ‘Collagen biosynthesis by cells in a tissue equivalent matrix in vitro’,Collagen Rel. Res.,4, pp. 351–364

    Google Scholar 

  • Ohta, A., Louie, J. C., andUitto, J. (1987): ‘Retinoid modulation by adherent mononuclear cells in culture’,Ann. Rheum. Dis.,46, pp. 357–362

    Google Scholar 

  • Oikarinen, A., Kylmäniemi, M., Autio-Harmainen, H., Autio, P., andSalo, T. (1993): ‘Demonstration of 72-kDa and 92-kDa forms of type IV collagenase in human skin: variable expression in various blistering diseases, induction during re-epithelialization, and decrease by topical glucocorticoïds’,J. Invest. Dermatol.,101, pp. 205–210

    Google Scholar 

  • Paladini, R. A., Takahashi, K., Bravo, N. S., andCoulombe, P. A. (1996): ‘Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16’,J. Cell. Biol.,132, pp. 381–397

    Google Scholar 

  • Páquet, I., Chouinard, N., andRouabhia, M. (1996): ‘Cutaneous cell and extracellular matrix responses to ultraviolet-B irradiation’,J. Cell. Phys.,166, pp. 296–304

    Google Scholar 

  • Paquette, J. S., Goulet, F., Boulet, L.-P. Tremblay, N., Chakir, J., Germain, L., andAuger, F. A. (1998): ‘Three-dimensional production of bronchiin vitro’,Can. Resp.,5, p. 1

    Google Scholar 

  • Parenteau, N. L., Nolte, C. M., Bilbo, P., Rosenberg, M., Wilkins, L. M., Johnson, E. W., Watson, S., Mason, V. S., andBell, E. (1991): ‘Epidermis generatedin vitro: Practical considerations and applications’,J. Cell Biochem.,45, pp. 245–251

    Google Scholar 

  • Parenteau, N. L., Bilbo, P., Nolte, C. M., Mason, V. S., andRosenberg, M. (1992): ‘The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function’,Cytotechnol.,9, pp. 163–171

    Google Scholar 

  • Pasternak, A. S., andMiller, W. M. (1995): ‘First-order toxicity assays for eye irritation using cell lines: parameters that affectsin vitro evaluation’,Fund. Appl. Toxicol.,25, pp. 253–263

    Google Scholar 

  • Petersen, M. J., Woodley, D. T., Stricklin, G. P., andO'Keefe, E. J. (1987): ‘Production of procollagenase by cultured human keratinocyte’,J. Biol. Chem.,262, pp. 835–840

    Google Scholar 

  • Phillips, T. J., Bhawa, J., Leigh, I. M., Baum, H. J., andGilchrist, B. A. (1990): ‘Cultured epidermal autografts and allografts: a study of differentiation and allograft survival’,J. Am. Acad. Dermatol.,23, pp. 189–1948

    Google Scholar 

  • Phillips, T. J., andGilchrest, B. A. (1990): ‘Cultured epidermal grafts in the treatment of leg ulcers’,Adv. Dermatol.,5, pp. 33–48

    Google Scholar 

  • Phillips, C. L., Tajna, S., andPinnell, S. R. (1992): ‘Aseorbic acid and transforming growth factor-β increase collagen biosynthesis via different mechanisms: coordinate regulation of pro-α(I) and pro-α(III) collagens’,Arch. Biochem. Biophys.,295, pp. 397–403

    Google Scholar 

  • Ponec, M., Weerheim, A., Kempenaar, J., Mommaas, A. M., andNugteren, D. H. (1988): ‘Lipid composition of cultured human keratinocytes in relation to their differentiation’,J. Lipid Res.,29, pp. 949–961

    Google Scholar 

  • Ponec, M. (1991): ‘Reconstruction of human epidermis on deepidermized dermis: Expression of differentiation-specific protein markers and lipid composition’,Toxic. In Vitro,5, pp. 597–606

    Google Scholar 

  • Ponec, M., Weerheim, A., Kempenaar, J., Mulder, A., Gooris, G. S., Bouwstra, J., andMommaas, A. M. (1997): ‘The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C’,J. Invest. Dermatol.,109, pp. 348–355

    Google Scholar 

  • Poole, A. R., Ritzkalla, G., Reiner, A., Brooks, E., Rorabeck, C., Bourne, R., andBogoch, E. (1993): ‘Osteoarthritis in the human knee: A dynamic process of cartilage matrix degradation, synthesis and reorganization’,in van der Berg, W. M., van der Kraan, P. M., andvan Lent P. L. E. M. (Eds.): ‘Joint destruction in arthritis and osteoarthritis’ (Birkhäuser Verlag, Basel, Germany), pp. 3–13

    Google Scholar 

  • Pope, M., Betjes, M. G. H., Hirmand, H., Hoffman L., andSteinman, R. M. (1995): ‘Both dendritic cells and memory T lymphocytes emigrate from organ cultures of human skin and form distinctive dendritic T-cell conjugates’,J. Invest. Dermatol.,104, pp. 11–17

    Google Scholar 

  • Postlethwaite, A. E., Holness, M. A., Katai, H., andRaghow, R. (1992): ‘Human fibroblasts synthetise elevated levels of extracellular matrix proteins in response to interleukin-4’,J. Clin. Invest.,90, pp. 1479–1485

    Google Scholar 

  • Prunieras, M., Régnier, M., andWoodley, D. (1983): ‘Methods for cultivation of keratinocytes with an air-liquid interface’,J. Invest. Dermatol.,81, pp. 28s-33s

    Google Scholar 

  • Rajabi, M. R., Dodge, G. R., Solomon, S., andPoole, A. R. (1991): ‘Immunochemical and immunohistochemical evidence of estrogen-mediated collagenolysis as a mechanism of cervical dilatation in the guinea pig at parturition’,Endocrinology,128, pp. 371–378

    Google Scholar 

  • Raynaud, F., Bauvois, B., Gerbaud, P., andEvain-Brion, D. (1992): ‘Characterization of specific proteases associated with the surface of human skin fibroblasts, and their modulation in pathology’,J. Cell. Physiol.,151, pp. 378–385

    Google Scholar 

  • Régnier, M., Staquet, M.-J., Schmitt, D., andSchmidt, R. (1997): ‘Integration of Langherans cells into pigmented reconstructed human epidermis’,J. Invest. Dermatol.,109, pp. 510–512

    Google Scholar 

  • Reponen, P., Sahlberg, C., Munaut, C., Thesleff, I., andTryggvason, K. (1994): ‘High expression of 92-kD Type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development’,J. Cell. Biol.,124, pp. 1091–1102

    Google Scholar 

  • Rheinwald, J. G., andGreen, H. (1975): ‘Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells’,Cell,6, pp. 331–344

    Google Scholar 

  • Rheinwald, J. G., andGreen H. (1977): ‘Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes’,Nature,265, pp. 421–424

    Google Scholar 

  • Rice, R. H., andGreen, H. (1979): ‘Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: Activation of the cross-linking by calcium ions’,Cell,18, pp. 681–694

    Google Scholar 

  • Romanic, A. M., andMadri, J. A. (1994): ‘The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent’,J. Cell. Biol.,125, pp. 1165–1178

    Google Scholar 

  • Rompré, P., Auger, F. A., Germain, L., Bouvard, V., López Valle, C. A., Thibault, J., andLe Duy, A. (1990): ‘The influence of initial collagen and cellular concentrations on the final surface area of dermal and skin equivalents: A Box-Behnken analysis’,In Vitro Cell Dev. Biol.,26, pp. 983–990

    Google Scholar 

  • Rouabhia, M., Germain, L., Bélanger, F., andAuger, F. A. (1993): ‘Cultured epithelium allografts: Langerhans cell thy-1+ dendritic epidermal cell depletion effects on allograft rejection’,Transplantation,56, pp. 259–264

    Google Scholar 

  • Rouabhia, M., Germain, L., andAuger, F. A. (1995): ‘Allogenic-syngeneic cultured epithelia: A successful therapeutic option for skin regeneration’,Transplantation,59, pp. 1229–1235

    Google Scholar 

  • Rouabhia, M. (1996a): ‘Permanent skin replacement using chimeric epithelial cultured sheets compromising xenogeneic and syngeneic keratinocytes’,Transplantation,61, pp. 1290–1300

    Google Scholar 

  • Rouabhia, M. (1996b): ‘In vitro production and transplantation of an immunologically active skin equivalents’,Lab. Invest.,75, pp. 305–317

    Google Scholar 

  • Rowden, G., Colp, P., Den, S., Auger, F. A., andLópez Valle, C. A. (1992): ‘Comparative epidermal Langherans cell migration studies in epidermal and epidermaldermal equivalents grafts’,J. Invest. Dermatol.,99, pp. 59–61

    Google Scholar 

  • Roy, S. D., Fujiki, J., andFleitman, J. S. (1993): ‘Permeabilities of alkyl p-aminobenzoates through living skin equivalent and cadaver skin’,J. Pharm. Sci.,82, pp. 1266–1268

    Google Scholar 

  • Rubin, J. S., Osada, H., Finch, P. W., Taylor, W. G., Rudikoff, S., andAaronson, S. A. (1989): ‘Purification and characterisation of a newly identified growth factor specific for epithelial cells’,Proc. Natl. Acad. Sci. (USA),86, pp. 802–806

    Google Scholar 

  • Rudolph, R. (1980): ‘Contraction and the control of contraction’,World J. Surg.,4, pp. 279–287

    MathSciNet  Google Scholar 

  • Rudolph, R., Vande Berg, J., andEhrlich, P. H. (1992): ‘Wound contraction and scar contracture’,in Saunders W. B. (Ed.): ‘Wound healing: Biochemical and clinical aspects’6, pp. 96–114

  • Ryan, G. B., Cliff, W. J., Gabbiani, G., Irlé, C., Montandon, D., Statkow, P. R., andMajno, G. (1974): ‘Myofibroblasts in human granulation tissue’,Human Pathology,5, pp. 55–67

    Google Scholar 

  • Sabolinski, M. L., Rovee, D. T., Parenteau, N. L., andMulder, G. D. (1996): ‘The efficacy and safety of Graftskin® for the treatment of chronic venous ulcers’,Biomaterials,17, pp. 311–320

    Google Scholar 

  • Schröder, J.-M. (1995): ‘Cytokine networks in the skin’,J. Invest. Dermatol.,105, pp. 20S-24S

    Google Scholar 

  • Schürch, W., Seemayer, T. A., andGabbiani, G. (1992): ‘Myofibroblast’,in Sternberg, S. S. (Ed.) ‘Histology for pathologists’ (Raven Press, NY),5, pp. 109–144

    Google Scholar 

  • Seltzer, J. L., Lee, A.-Y., Akers, K. T., Sudbeck, B., Southon, E. A., Wayner, E. A., andEisen, A. Z. (1994): ‘Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrins receptors but is not related to lattice contraction’,Exp. Cell Res.,213, pp. 365–374

    Google Scholar 

  • Shakespeare, V., andShakespeare, P. (1991): ‘Effects of granulation-tissue-conditioned medium on the growth of human keratinocytesin vitro’,Br. J. Plast. Surg.,44, pp. 219–223

    Google Scholar 

  • Simon, M., andGreen, H. (1985): ‘Enzymatic cross-linking of involucrin and other proteins by keratinocyte particulatesin vitro’,Cell,40, pp. 677–683

    Google Scholar 

  • Souren, J. M., Ponec, M., andvan Wijk, R. (1989): ‘Contraction of collagen by human fibroblasts and keratinocytes’,In Vitro Cell. Dev. Biol.,25, pp. 1039–1045

    Google Scholar 

  • Stanley, E. R., andGuilbert, L. J. J. (1981): ‘Methods for the purification, assay, characterization and target cell binding of a colony stimulating factor (CSF-1)’,Immunol. Methods,42, pp. 253–284

    Google Scholar 

  • Stephens, P., Wood, E. J., andRaxworthy, M. J. (1996): ‘Development of a multilayeredin vitro model for studying events associated with wound healing’,Wound Rep. Reg.,4, pp. 393–401

    Google Scholar 

  • Stoner, M. L., andWood, F. M. (1996): ‘Systemic factors influencing the growth of cultured epithelial autograft’,Burns,22, pp. 197–199

    Google Scholar 

  • Streilein, J. W. (1983): ‘Skin-associated lymphoid tissues (SALT): origins and functions’,J. Invest. Dermatol.,80, pp. 12s-16s

    Google Scholar 

  • Tamaki, K., Saitoh, A., Gaspari, A. A., Yasaka, N., andFurue, M. (1994): ‘Migration of Thy-1+ dendritic epidermal cells (Thy-1+DEC): Ly48 and TNF-g are responsible for the migration of Thy-1+DEC to the epidermis’,J. Invest. Dermatol.,103, pp. 290–294

    Google Scholar 

  • Tavakkol, A., Elder, J. T., Griffiths, C. E. M., Cooper, K. D., Talwar, H., Fisher, G. J., Keane, K. M., Foltin, S. K., andVoorhees, J. J. (1992): ‘Expression of growth hormone receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin’,J. Invest. Dermatol.,99, pp. 343–349

    Google Scholar 

  • Tingstrom, A., Heldin, C., andRubin, K. (1992): ‘Regulation of fibroblast-mediated collagen gel contraction by platelet-derived growth factor, interleukin-la and transforming growth factor-β1’,J. Cell Sci.,102, pp. 315–322

    Google Scholar 

  • Tuan, T., Song, A., Chang, S., Younai, S., andNimmi, M. E. (1996): ‘In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels’,Exp. Cell Res.,223, pp. 127–134

    Google Scholar 

  • Turksen, K., Youngsook, C., andFuchs, E. (1991): ‘Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal graft cultures’,Cell. Regulation,2, pp. 613–625

    Google Scholar 

  • Uitto, J., andEisen, A. Z. (1987): ‘Biology of the dermis: collagen’,in Fitzpatrick, T. B., Eisen, A. Z., Wolff, K. Freedberg, I. M., andAusten, K. F. (Eds.): ‘Dermatology in general medicine’ (McGraw Hill Book Co., New York)1, pp. 1–1598

    Google Scholar 

  • Weinberg, C. B., andBell, E. (1986): ‘A blood vessel model constructed from collagen and cultured vascular cells’,Science,231, pp. 397–400

    Google Scholar 

  • Werner, S., Peters, K. G., Longaker, M. T., Fuller-Pace, F., Banda, M. J., andWilliams, L. T. (1992): ‘Large induction of keratinocyte growth factor expression in the dermis during wound healing’,Proc. Natl. Acad. Sci. (USA),89, pp. 6896–6900

    Google Scholar 

  • Wilkins, L. M. (1994): ‘Development of a bilayered living skin construct for clinical applications’,Biotechnol. Bioeng.,43, pp. 747–756

    Google Scholar 

  • Woessner, J. F. (1991): ‘Matrix metalloproteinases and their inhibitors in connective tissue remodeling’,FASEB,5, pp. 2145–2154

    Google Scholar 

  • Wolff, K., andStingl, G. (1983): ‘The Langerhans cell’,J. Invest. Dermatol.,80, pp. 17s-21s

    Google Scholar 

  • Woodley, D. T., Peterson, H. D., andHerzog, S. R. (1988): ‘Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils’,JAMA,259, pp. 2566–2571

    Google Scholar 

  • Woodley, D. T., Yamauchi, M., Kimberley, C. W., Mechanic, G., andBriggaman, R. A. (1991): ‘Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction’,J. Invest. Dermatol.,97, pp. 580–585

    Google Scholar 

  • Xu, W., Germain, L., Goulet, F., andAuger, F. A. (1996a): ‘Permanent grafting of living skin substitutes: Surgical parameters to control for successful results’,J. Burn Care Rehabil.,17, pp. 7–13

    MATH  Google Scholar 

  • Xu, W., Li, H., Brodniewicz, T., Auger, F. A., andGermain, L. (1996b): ‘Cultured epidermal sheet grafting with Hemaseel® HMN fibrin sealant on nude mice’,Burns,22, pp. 191–196

    Google Scholar 

  • Yuspa, S. H., Wang, Q., Weinberg, W. C., Goodman, L., Ledbetter, S., Dooley, T., andLichti, U. (1993): ‘Regulation of hair follicle development: anin vitro model for hair follicle invasion of dermis and associated connective tissue remodeling’,J. Invest. Dermatol.,101, pp. 27S-32S

    Google Scholar 

  • Zieske, J. D., Mason, V. S., Wasson, M. E., Meunier, S. F., Nolte, C. J. M., Fukai, N., Olsen, B. R., andParenteau, N. L. (1994): ‘Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interactions’,Exp. Cell Res.,214, pp. 621–633

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Auger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auger, F.A., Rouabhia, M., Goulet, F. et al. Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Med. Biol. Eng. Comput. 36, 801–812 (1998). https://doi.org/10.1007/BF02518887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02518887

Keywords

Navigation