Skip to main content
Log in

The theory of the numerical-analytic method: Achievements and new trends of development. I

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We describe the history of the development of the numerical-analytic method suggested by Samoilenko in 1965 and analyze the relation of this method to other investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Samoilenko, “Numerical-analytic method for the investigation of periodic systems of ordinary differential equations. I,” Ukr. Mat. Zh., 17, No. 4, 82–93 (1965).

    Article  Google Scholar 

  2. A. M. Samoilenko, “Numerical-analytic method for the investigation of periodic systems of ordinary differential equations. II,” Ukr. Mat. Zh., 18, No. 2, 50–59 (1966).

    Article  Google Scholar 

  3. A. M. Samoilenko and M. I. Rontó, Numerical-Analytic Method for the Investigation of Periodic Solutions, Vyshcha Shkola, Kiev (1976).

    Google Scholar 

  4. A. M. Samoilenko and M. I. Rontó, Numerical-Analytic Methods for the Investigation of Solutions of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  5. A. M. Samoilenko and M. I. Rontó, Numerical-Analytic Methods in the Theory of Boundary-Value Problems for Ordinary Differential Equations [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  6. A. M. Samoilenko and V. N. Laptinskii, “On estimates of periodic solutions of differential equations,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 1, 30–32 (1982).

  7. M. G. Krein and M. A. Rutman, “Linear operators under the action of which a cone in a Banach space is invariant,” Usp. Mat. Nauk, 3, Issue 1 (23), 3–95 (1948). English translation: AMS. Translation No. 26, Am. Math. Soc, Providence (1950).

    MathSciNet  Google Scholar 

  8. N. A. Evkhuta and P. P. Zabreiko. “On the Samoilenko method for finding periodic solutions of quasilinear differential equations in a Banach space,” Ukr. Mat. Zh., 37, No. 2, 162–168 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  9. N. A. Evkhuta and P. P. Zabreiko, “On the convergence of the Samoilenko method of successive approximations for finding periodic solutions,” Dokl. Akad. Nauk Bel. SSR. 29, No. 1, 15–18 (1985).

    MATH  MathSciNet  Google Scholar 

  10. E. P. Trofimchuk, “Integral operators of the method of periodic successive approximations,” Mat. Fiz Nelin. Mekh., 13, 31–36 (1990).

    MathSciNet  Google Scholar 

  11. M. Kwapisz, “Some remarks on an integral equation arising in applications of numerical-analytic method of solving of boundaryvalue problems,” Ukr. Mat. Zh., 44, No. 1, 128–132 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  12. M. I. Rontó and J. Mészáros, “Some remarks on the convergence analysis of the numerical-analytic method based on successive approximations,” Ukr. Mat. Zh., 48, No. 1, 90–95 (1996).

    Article  Google Scholar 

  13. M. I. Rontó, A. N. Rontó, and S I. Trofimchuk, Numerical-Analytic Method for Differential and Difference Equations in Partially Ordered Banach Spaces and Some Applications. Preprint No. 96-02, Institute of Mathematics, University of Miskolc, Miskolc (1996).

    Google Scholar 

  14. M. I. Rontó and S. I. Trofimchuk, Numerical-Analytic Method for Nonlinear Differential Equations, Preprint No. 96-01, Institute of Mathematics, University of Miskolc, Miskolc (1996).

    Google Scholar 

  15. J. Hale, Oscillations in Nonlinear Systems [Russian translation], Mir, Moscow (1966).

    MATH  Google Scholar 

  16. R. Conti, “Recent trends in the theory of boundary-value problems for ordinary differential equations,” Boll. Unione Mat. Ital., 22, No. 2, 135–178 (1967).

    MATH  MathSciNet  Google Scholar 

  17. J. Mawhin, “Recent trends in boundary-value problems,” Abh. Wiss. DDR Abt. Math. Naturwiss. Techn., 4, 51–70 (1977).

    MathSciNet  Google Scholar 

  18. J. Mawhin, Topological Degree Methods in Nonlinear Boundary-Value Problems, CBMS Regional Conference Series in Mathematics, Am. Math. Soc., Providence (1979).

  19. A. Capietto, J. Mawhin, and F. Zanolin, “A continuation approach to superlinear periodic boundary-value problems,” J. Different. Equat., 88, 347–395 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  20. A. A. Boichuk, V. F. Zhuravlev, and A. M. Samoilenko, Generalized Inverse Operators and Noether Boundary-Value Problems [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1995).

    MATH  Google Scholar 

  21. I. T. Kiguradze, “Boundary-value problems for systems of ordinary differential equations,” in: Contemporary Problems of Mathematics. New Achievements [in Russian], Nauka, Moscow (1987), pp. 3–103.

    Google Scholar 

  22. M. Farkas, Periodic Motions, Springer, New York (1994).

    MATH  Google Scholar 

  23. N. Rouche and J. Mawhin, Ordinary Differential Equations. Stability and Periodic Solutions, Pitman, Boston (1980).

    MATH  Google Scholar 

  24. L. Cesari and J. Hale, “A new sufficient condition for periodic solutions of weakly nonlinear differential systems,” Proc. Am. Math. Soc., 8, 757–764 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Cesari, “Functional analysis and periodic solutions of nonlinear differential equations,” in: Contributions to Differential Equations, Vol. 1, Wiley, New York (1963), pp. 149–187.

    Google Scholar 

  26. L. Cesari, “Functional analysis, nonlinear differential equations, and the alternative method,” in: Nonlinear Functional Analysis and Applications, Dekker, New York (1976), pp. 1–197.

    Google Scholar 

  27. L. Cesari. Asymptotic Behavior and Stability Problems in Ordinary Differential Equations [Russian translation], Mir, Moscow (1964).

    MATH  Google Scholar 

  28. M. Kwapisz, “On modification of the integral equation of Samoilenko’s numerical-analytic method,” Math. Nachr., 157, 125–135 (1992).

    MATH  MathSciNet  Google Scholar 

  29. H. W. Knobloch, “Remarks on a paper of L. Cesari on functional analysis and nonlinear differential equations,” Michigan Math. J., 16, No. 4, 417–430 (1963)

    MathSciNet  Google Scholar 

  30. J. Mawhin, “Degré topologique et solutions périodique des systéms différentiels non linéares,” Bull. Soc. Roy Sci. Liége, 38, 308–398 (1969).

    MATH  MathSciNet  Google Scholar 

  31. R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer, New York (1977).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 1, pp. 102–117, January, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rontó, M.I., Samoilenko, A.M. & Trofimchuk, S.I. The theory of the numerical-analytic method: Achievements and new trends of development. I. Ukr Math J 50, 116–135 (1998). https://doi.org/10.1007/BF02514693

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02514693

Keywords

Navigation