Skip to main content
Log in

Breakdowns and stagnation in iterative methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

One of the disadvantages of Krylov subspace iterative methods is the possibility of breakdown. This occurs when it is impossible to get the next approximation of the solution to the linear system of equationsAu=f. There are two different situations: lucky breakdown, when we have found the solution and hard breakdown, when the next Krylov subspace cannot be generated and/or the next approximate solution (iterate) cannot be computed. We show that some breakdowns depend on the chosen method of generating the basis vectors. Another undesirable feature of the iterative methods is stagnation. This occurs when the error does not change for several iterative steps. We investigate when iterative methods can stagnate and describe conditions which characterize stagnation. We show that in some cases stagnation can imply breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Ashby, T. Manteuffel, and P. Saylor,A taxonomy for conjugate gradient methods, SIAM J. Numer. Anal., 27 (1990), pp. 1542–1568.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Barnett,Matrices. Methods and Applications, Clarendon Press, Oxford, 1990.

    MATH  Google Scholar 

  3. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst,Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1993.

    MATH  Google Scholar 

  4. C. Brezinski, M. Redivo Zaglia, and H. Sadok,A breakdown-free Lanczos type algorithm for solving linear systems, Numer. Math., 63 (1992), pp. 29–38.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Brown,A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 58–78.

    Article  MATH  Google Scholar 

  6. S. Eisenstat, H. Elman, and M. Schultz,Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345–357.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Faber and T. Manteuffel,Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), pp. 352–362.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Faber and T. Manteuffel,Orthogonal error methods, SIAM J. Numer. Anal., 24 (1987), pp. 170–187.

    Article  MATH  MathSciNet  Google Scholar 

  9. R., Fletcher,Conjugate gradient methods for indefinite systems, in Proceedings Dundee Conference on Numerical Analysis, 1975, G. Watson, ed., Springer-Verlag, 1976, Lecture Notes in Mathematics 506, pp. 73–89.

  10. R. Freund, G. Golub, and N. Nachtigal,Iterative solution of linear systems, Acta Numerica, 1 (1991), pp. 57–100.

    Article  MathSciNet  Google Scholar 

  11. R. Freund, M. Gutknecht, and N. Nachtigal,An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993), pp. 137–158.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Freund and N. Nachtigal,QMR: a quasi minimal residual method for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315–339.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Golub and D. O’Leary,Some history of the conjugate gradient and Lanczos methods, SIAM Rev., 31 (1989), pp. 50–102.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Golub and C. Van Loan,Matrix Computations 2nd ed., Johns Hopkins Univ. Press, Baltimore, 1989.

    MATH  Google Scholar 

  15. M. Gutknecht,A completed theory of the unsymmetric Lanczos process and related algorithms, part I, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 594–639.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Gutknecht,Changing the norm in conjugate gradient type algorithms, SIAM J. Numer. Anal., 30 (1993), pp. 40–56.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Gutknecht,A completed theory of the unsymmetric Lanczos process and related algorithms, part II, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 15–58.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Hestenes,A History of Scientific Computing, Addison-Wesley, Reading, MA, 1990, Chap. Conjugacy and gradients, pp. 167–179.

    Google Scholar 

  19. M. Hestenes and E. Stiefel,Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409–435.

    MATH  MathSciNet  Google Scholar 

  20. K. Jea and D. Young,Conjugate-gradient methods for nonsymmetrizable linear systems, Linear Algebra Appl., 52/53 (1983), pp. 399–417.

    MathSciNet  Google Scholar 

  21. W. Joubert,Lanczos methods for the solution of nonsymmetric systems of linear equations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 926–943.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Joubert and T. Manteuffel,Iterative methods for nonsymmetric linear systems, in Iterative Methods for Large Linear Systems, L. Hayes and D. Kincaid, eds., Academic Press, 1990, pp. 149–171.

  23. W. Joubert and D. Young,Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms, Linear Algebra Appl., 88/89 (1987), pp. 449–485.

    Article  MathSciNet  Google Scholar 

  24. C. Lanczos,An iteration method for the solution of the eigenvalue problem for linear differential and integral operators, J. Res. Nat. Bur. Standards, 45 (1950), pp. 255–282.

    MathSciNet  Google Scholar 

  25. Z. Leyk,Modified generalized conjugate residual method for nonsymmetric systems of linear equations, in Proceedings of the 6th Conference on Computational Techniques and Applications: CTAC93, D. Steward, H. Gardner, and D. Singleton, eds., World Scientific, Singapore, 1994, pp. 338–344.

    Google Scholar 

  26. N. Nachtigal, S. Reddy, and L. Trefethen,How fast are nonsymmetric matrix iteration?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778–795.

    Article  MATH  MathSciNet  Google Scholar 

  27. B. Parlett, D. Taylor, and Z. Liu,A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comp., 44 (1985), pp. 105–124.

    Article  MATH  MathSciNet  Google Scholar 

  28. Y. Saad,Krylov subspace methods for solving, unsymmetric linear systems, Math. Comp., 37 (1981), pp. 105–126.

    Article  MATH  MathSciNet  Google Scholar 

  29. Y. Saad,The Lanczos biorthogonalization algorithm and other oblique projection methods for solving nonsymmetric linear systems, SIAM J. Numer. Anal., 19 (1982), pp. 485–506.

    Article  MATH  MathSciNet  Google Scholar 

  30. Y. Saad and M. Schultz,Conjugate gradient-like algorithms for nonsymmetric systems, Math. Comp., 44 (1985), pp. 417–424.

    Article  MATH  MathSciNet  Google Scholar 

  31. Y. Saad and M. Schultz,GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Sonneveld,CGS, a fast Lanczos-type solver for nonsymmetric linear, systems, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 36–52.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. van der Vorst,A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631–644.

    Article  MATH  Google Scholar 

  34. H. Walker and L. Zhou,A simpler GMRES, Numer. Linear Algebra Appl., 1 (1994), pp. 571–581.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyk, Z. Breakdowns and stagnation in iterative methods. Bit Numer Math 37, 377–403 (1997). https://doi.org/10.1007/BF02510219

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510219

AMS subject classification

Key words

Navigation